Guided Differentiation of Embryonic Stem Cells into Pdx1-Expressing Regional-Specific Definitive Endoderm

Author:

Shiraki Nobuaki12,Yoshida Tetsu12,Araki Kimi3,Umezawa Akihiro4,Higuchi Yuichiro1,Goto Hideo1,Kume Kazuhiko1,Kume Shoen125

Affiliation:

1. Division of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan

2. 21st Century Center of Excellence, Kumamoto University, Kumamoto, Japan

3. Division of Developmental Genetics, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan

4. Department of Reproductive Biology; National Institute for Child Health and Development, Tokyo, Japan

5. Global Center of Excellence, Kumamoto University, Kumamoto, Japan

Abstract

Abstract The generation of specific lineages of the definitive endoderm from embryonic stem (ES) cells is an important issue in developmental biology, as well as in regenerative medicine. This study demonstrates that ES cells are induced sequentially into regional-specific gut endoderm lineages, such as pancreatic, hepatic, and other cell lineages, when they are cultured directly on a monolayer of mesoderm-derived supporting cells. A detailed chronological analysis revealed that Activin, fibroblast growth factor, or bone morphogenetic protein signals are critical at various steps and that additional short-range signals are required for differentiation into Pdx1-expressing cells. Under selective culture conditions, definitive endoderm (47%) or Pdx1-positive pancreatic progenitors (30%) are yielded at a high efficiency. When transplanted under the kidney capsule, the Pdx1-positive cells further differentiated into all three pancreatic lineages, namely endocrine, exocrine, and duct cells. Disclosure of potential conflicts of interest is found at the end of this article.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3