Mitogen-Inducible Gene 6 Triggers Apoptosis and Exacerbates ER Stress-Induced β-Cell Death

Author:

Chen Yi-Chun12,Colvin E. Scott12,Maier Bernhard F.1,Mirmira Raghavendra G.12,Fueger Patrick T.12

Affiliation:

1. Department of Pediatrics and Herman B. Wells Center for Pediatric Research (Y.-C.C., E.S.C., B.F.M., R.G.M., P.T.F.),Indiana University School of Medicine, Indianapolis, Indiana

2. Department of Cellular and Integrative Physiology (Y.-C.C., E.S.C., R.G.M., P.T.F.), Indiana University School of Medicine, Indianapolis, Indiana 46202

Abstract

The increased insulin secretory burden placed on pancreatic β-cells during obesity and insulin resistance can ultimately lead to β-cell dysfunction and death and the development of type 2 diabetes. Mitogen-inducible gene 6 (Mig6) is a cellular stress-responsive protein that can negatively regulate the duration and intensity of epidermal growth factor receptor signaling and has been classically viewed as a molecular brake for proliferation. In this study, we used Mig6 heterozygous knockout mice (Mig6+/−) to study the role of Mig6 in regulating β-cell proliferation and survival. Surprisingly, the proliferation rate of Mig6+/− pancreatic islets was lower than wild-type islets despite having comparable β-cell mass and glucose tolerance. We thus speculated that Mig6 regulates cellular death. Using adenoviral vectors to overexpress or knockdown Mig6, we found that caspase 3 activation during apoptosis was dependent on the level of Mig6. Interestingly, Mig6 expression was induced during endoplasmic reticulum (ER) stress, and its protein levels were maintained throughout ER stress. Using polyribosomal profiling, we identified that Mig6 protein translation was maintained, whereas the global protein translation was inhibited during ER stress. In addition, Mig6 overexpression exacerbated ER stress-induced caspase 3 activation in vitro. In conclusion, Mig6 is transcriptionally up-regulated and resistant to global translational inhibition during stressed conditions in β-cells and mediates apoptosis in the form of caspase 3 activation. The sustained production of Mig6 protein exacerbates ER stress-induced β-cell death. Thus, preventing the induction, translation, and/or function of Mig6 is warranted for increasing β-cell survival.

Publisher

The Endocrine Society

Subject

Endocrinology,Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3