Highly Visible Expression of an Oxytocin-Monomeric Red Fluorescent Protein 1 Fusion Gene in the Hypothalamus and Posterior Pituitary of Transgenic Rats

Author:

Katoh Akiko12,Fujihara Hiroaki1,Ohbuchi Toyoaki12,Onaka Tatsushi3,Hashimoto Takashi4,Kawata Mitsuhiro4,Suzuki Hideaki2,Ueta Yoichi1

Affiliation:

1. Departments of Physiology (A.K., H.F., T.Oh., Y.U.), School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan;

2. Otorhinolaryngology (A.K., T.Oh., H.S.), School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan;

3. Department of Physiology (T.On.), Jichi Medical School, Tochigi 329-0498, Japan;

4. Department of Anatomy and Neurobiology (T.H., M.K.), Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan

Abstract

We have generated rats bearing an oxytocin (OXT)-monomeric red fluorescent protein 1 (mRFP1) fusion transgene. The mRFP1 fluorescence was highly visible in ventral part of the supraoptic nucleus (SON) and the posterior pituitary in a whole mount. mRFP1 fluorescence in hypothalamic sections was also observed in the SON, the paraventricular nucleus (PVN), and the internal layer of the median eminence. Salt loading for 5 d caused a marked increase in mRFP1 fluorescence in the SON, the PVN, the median eminence, and the posterior pituitary. In situ hybridization histochemistry revealed that the expression of the mRNA encoding the OXT-mRFP1 fusion gene was observed in the SON and the PVN of euhydrated rats and increased dramatically after chronic salt loading. The expression of the endogenous OXT and the arginine vasopressin (AVP) genes were significantly increased in the SON and the PVN after chronic salt loading in both nontransgenic and transgenic rats. These responses were not different between male and female rats. Compared with nontransgenic rats, euhydrated and salt-loaded male and female transgenic rats showed no significant differences in plasma osmolality, sodium concentration, OXT, and AVP levels. Finally, we succeeded in generating a double-transgenic rat that expresses both the OXT-mRFP1 fusion gene and the AVP-enhanced green fluorescent protein fusion gene. Our new transgenic rats are valuable new tools to study the physiology of the hypothalamo-neurohypophysial system.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3