In Vivo Fluorescence Imaging and Urinary Monoamines as Surrogate Biomarkers of Disease Progression in a Mouse Model of Pheochromocytoma

Author:

Ullrich Martin12,Bergmann Ralf12,Peitzsch Mirko3,Cartellieri Marc4,Qin Nan23,Ehrhart-Bornstein Monika2,Block Norman L.5,Schally Andrew V.5,Pietzsch Jens16,Eisenhofer Graeme23,Bornstein Stefan R.2,Ziegler Christian G.2

Affiliation:

1. Department of Radiopharmaceutical and Chemical Biology (M.U., R.B., J.P.), Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany

2. Department of Medicine III (M.U., N.Q., M.E.-B., G.E., S.R.B., C.G.Z.), University Hospital Carl Gustav Carus, 01307 Dresden, Germany; Institute for Clinical Chemistry, Technische Universität Dresden, Germany

3. Laboratory Medicine (M.P., N.Q., G.E.), Technische Universität Dresden, Germany

4. Department of Radioimmunology (M.C.), Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany

5. VA Medical Center Miami FL and Department of Pathology and Medicine (N.L.B., A.V.S.), Division of Endocrinology and Hematology-Oncology, University of Miami Miller School of Medicine, Miami, Florida 33136

6. Department of Chemistry and Food Chemistry (J.P.), Technische Universität Dresden, Dresden, Germany

Abstract

Abstract Pheochromocytoma (PHEO) is a rare but potentially lethal neuroendocrine tumor arising from catecholamine-producing chromaffin cells. Especially for metastatic PHEO, the availability of animal models is essential for developing novel therapies. For evaluating therapeutic outcome in rodent PHEO models, reliable quantification of multiple organ lesions depends on dedicated small-animal in vivo imaging, which is still challenging and only available at specialized research facilities. Here, we investigated whether whole-body fluorescence imaging and monitoring of urinary free monoamines provide suitable parameters for measuring tumor progression in a murine allograft model of PHEO. We generated an mCherry-expressing mouse PHEO cell line by lentiviral gene transfer. These cells were injected subcutaneously into nude mice to perform whole-body fluorescence imaging of tumor development. Urinary free monoamines were measured by liquid chromatography with tandem mass spectrometry. Tumor fluorescence intensity and urinary outputs of monoamines showed tumor growth–dependent increases (P < .001) over the 30 days of monitoring post-tumor engraftment. Concomitantly, systolic blood pressure was increased significantly during tumor growth. Tumor volume correlated significantly (P < .001) and strongly with tumor fluorescence intensity (rs = 0.946), and urinary outputs of dopamine (rs = 0.952), methoxytyramine (rs = 0.947), norepinephrine (rs = 0.756), and normetanephrine (rs = 0.949). Dopamine and methoxytyramine outputs allowed for detection of lesions at diameters below 2.3 mm. Our results demonstrate that mouse pheochromocytoma (MPC)-mCherry cell tumors are functionally similar to human PHEO. Both tumor fluorescence intensity and urinary outputs of free monoamines provide precise parameters of tumor progression in this sc mouse model of PHEO. This animal model will allow for testing new treatment strategies for chromaffin cell tumors.

Publisher

The Endocrine Society

Subject

Endocrinology

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3