Transforming Growth Factor β Is a Critical Regulator of Adult Human Islet Plasticity

Author:

Hanley Stephen1,Rosenberg Lawrence1

Affiliation:

1. Department of Surgery, McGill University, and Centre for Pancreatic Diseases, McGill University Health Centre, Montreal, Quebec, Canada H3G 1A4

Abstract

AbstractTissue plasticity is well documented in the context of pancreatic regeneration and carcinogenesis, with recent reports implicating dedifferentiated islet cells both as endocrine progenitors and as the cell(s) of origin in pancreatic adenocarcinoma. Accordingly, it is noteworthy that accumulating evidence suggests that TGFβ signaling is essential to pancreatic endocrine development and maintenance, whereas its loss is associated with the progression to pancreatic adenocarcinoma. The aim of this study was to examine the role of TGFβ in an in vitro model of islet morphogenetic plasticity. Human islets were embedded in a collagen gel and cultured under conditions that induced transformation into duct-like epithelial structures (DLS). Addition of TGFβ caused a dose-dependent decrease in DLS formation. Although it was demonstrated that collagen-embedded islets secrete low levels of TGFβ, antibody-mediated neutralization of this endogenously released TGFβ improved DLS formation rates, suggesting local TGFβ concentrations may in fact be higher. Time course studies indicated that TGFβ signaling was associated with an increase in ERK and p38 MAPK phosphorylation, although inhibitor-based studies were consistent with an islet endocrine-stabilizing effect mediated by p38 alone. Localization of TGFβ signaling molecules suggested that the action of TGFβ is directly on the β-cell to inhibit apoptosis and thus stabilize endocrine phenotype.

Publisher

The Endocrine Society

Subject

Endocrinology,Molecular Biology,General Medicine

Reference88 articles.

1. Regulation of terminal differentiation of zymogenic cells by transforming growth factor α in transgenic mice.;Bockman;Gastroenterology,1995

2. Regenerative biology: the emerging field of tissue repair and restoration.;Tsonis;Differentiation,2002

3. Metaplasia in the pancreas.;Lardon;Differentiation,2005

4. Apoptosis contributes to the involution of β-cell mass in the post partum rat pancreas.;Scaglia;Endocrinology,1995

5. Islet pathology and the pathogenesis of type 1 and type 2 diabetes mellitus revisited.;Kloppel;Surv Synth Pathol Res,1985

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3