Metabolomic and Genetic Analysis of Biomarkers for Peroxisome Proliferator-Activated Receptor α Expression and Activation

Author:

Zhen Yueying1,Krausz Kristopher W.1,Chen Chi1,Idle Jeffrey R.2,Gonzalez Frank J.1

Affiliation:

1. Laboratory of Metabolism (Y.Z., K.W.K., C.C., F.J.G.), National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892;

2. Institute of Pharmacology (J.R.I.), First Faculty of Medicine, Charles University, 128 00 Praha 2, Czech Republic

Abstract

AbstractPeroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor with manifold effects on intermediary metabolism. To define a set of urinary biomarkers that could be used to determine the efficacy of PPARα agonists, a metabolomic investigation was undertaken in wild-type and Pparα-null mice fed for 2 wk either a regular diet or a diet containing the PPARα ligand Wy-14,643 ([4-chloro-6-(2,3-xylidino)-2-pyrimidinylthio] acetic acid), and their urine was analyzed by ultra-performance liquid chromatography coupled with time-of-flight mass spectrometry. Principal components analysis of 6393 accurate mass positive ions revealed clustering as a single phenotype of the treated and untreated Pparα (−/−) mice plus two additional discrete phenotypes for the treated and untreated Pparα (+/+) mice. Biomarkers of PPARα activation were identified from their accurate masses and confirmed by tandem mass spectrometry of authentic compounds. Biomarkers were quantitated from raw chromatographic data using appropriate calibration curves. PPARα urinary biomarkers highly statistically significantly elevated by Wy-14,643 treatment included 11β-hydroxy-3,20-dioxopregn-4-en-21-oic acid (>3700-fold), 11β,20-dihydroxy-3-oxopregn-4-en-21-oic acid (50-fold), nicotinamide (>2-fold), nicotinamide 1-oxide (5-fold), 1-methylnicotinamide (1.5-fold), hippuric acid (2-fold), and 2,8-dihydroxyquinoline-β-d-glucuronide (3-fold). PPARα urinary biomarkers highly statistically significantly attenuated by Wy-14,643 treatment included xanthurenic acid (1.3-fold), hexanoylglycine (20-fold), phenylpropionylglycine (4-fold), and cinnamoylglycine (9-fold). These biomarkers arise from PPARα effects on tryptophan, corticosterone, and fatty acid metabolism and on glucuronidation. This study underscores the power of mass spectrometry-based metabolomics combined with genetically modified mice in the definition of monogenic metabolic phenotypes.

Publisher

The Endocrine Society

Subject

Endocrinology,Molecular Biology,General Medicine

Reference33 articles.

1. An overview on biological mechanisms of PPARs.;Kota;Pharmacol Res,2005

2. Peroxisome proliferator-activated receptor-α and liver cancer: where do we stand?;Peters;J Mol Med,2005

3. Hepatic effects of some [4-chloro-6-(2,3-xylidino)-2-pyrimidinylthio] acetic acid (WY-14,643) analogs in the mouse.;Reddy;Arch Int Pharmacodyn Ther,1977

4. Mitogenic and carcinogenic effects of a hypolipidemic peroxisome proliferator, [4-chloro-6-(2,3-xylidino)-2-pyrimidinylthio]acetic acid (Wy-14, 643), in rat and mouse liver.;Reddy;Cancer Res,1979

5. Targeted disruption of the α isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators.;Lee;Mol Cell Biol,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3