New Insights into the Role of Androgens in Wolffian Duct Stabilization in Male and Female Rodents

Author:

Welsh Michelle1,Sharpe Richard M.1,Walker Marion1,Smith Lee B.1,Saunders Philippa T. K.1

Affiliation:

1. Human Reproductive Sciences Unit, Queen’s Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom

Abstract

Androgen-mediated wolffian duct (WD) development is programmed between embryonic d 15.5 (e15.5) and 17.5 in male rats, and WD differentiation has been shown to be more susceptible to reduced androgen action than is its initial stabilization. We investigated regulation of these events by comparing fetal WD development at e15.5–postnatal d0 in male and female androgen receptor knockout mice, and in rats treated from e14.5 with flutamide (100 mg/kg/d) plus di-n(butyl) phthalate (500 mg/kg/d) to block both androgen action and production, testosterone propionate (20 mg/kg/d) to masculinize females, or vehicle control. In normal females, WD regression occurred by e15.5 in mice and e18.5 in rats, associated with a lack of epithelial cell proliferation and increased apoptosis, disintegration of the basement membrane, and reduced epithelial cell height. Exposure to testosterone masculinized female rats including stabilization and partial differentiation of WDs. Genetic or chemical ablation of androgen action in males prevented masculinization and induced WD regression via similar processes to those in normal females, except this occurred 2–3 d later than in females. These findings provide the first evidence that androgens may not be the only factor involved in determining WD fate. Other factors may promote survival of the WD in males or actively promote WD regression in females, suggesting sexually dimorphic differences in the preprogrammed setup of the WD.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3