Affiliation:
1. Department of Medicine, Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, Virginia 22908-1413
Abstract
Pulsatility is a fundamental feature of pancreatic islets and a hallmark of hormone secretion. Isolated pancreatic islets endogenously generate rhythms in secretion, metabolic activity, and intracellular calcium ([Ca2+]i) that are important to normal physiological function. Few studies have directly compared oscillatory and nonoscillatory islets to identify possible differences in function. We investigated the hypothesis that the loss of these oscillations is a leading indicator of islet dysfunction by comparing oscillatory and nonoscillatory mouse islets for multiple parameters of function. Nonoscillatory islets displayed elevated basal [Ca2+]i and diminished [Ca2+]i response and insulin secretory response to 3–28 mm glucose stimulation compared with oscillatory islets, suggesting diminished glucose sensitivity. We investigated several possible mechanisms to explain these differences. No differences were observed in mitochondrial membrane potential, estimated ATP-sensitive potassium channel and L-type calcium channel activity, or cell death rates. Nonoscillatory islets, however, showed a reduced response to the sarco(endo)plasmic reticulum calcium ATPase inhibitor thapsigargin, suggesting a disruption in calcium homeostasis in the endoplasmic reticulum (ER) compared with oscillatory islets. The diminished ER calcium homeostasis among nonoscillatory islets was also consistent with the higher cytosolic calcium levels observed in 3 mm glucose. Inducing mild damage with low-dose proinflammatory cytokines reduced islet oscillatory capacity and produced similar effects on glucose-stimulated [Ca2+]i, basal [Ca2+]i, and thapsigargin response observed among untreated nonoscillatory islets. Our data suggest the loss of oscillatory capacity may be an early indicator of diminished islet glucose sensitivity and ER dysfunction, suggesting targets to improve islet assessment.The loss of islet calcium oscillations correlates with impaired calcium regulation and reduced insulin secretion, suggesting oscillatory capacity is important to islet health and function.
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献