1α,25-Dihydroxyvitamin D3 Reduces c-Myc Expression, Inhibiting Proliferation and Causing G1 Accumulation in C4-2 Prostate Cancer Cells

Author:

Rohan JoyAnn N. Phillips1,Weigel Nancy L.12

Affiliation:

1. Department of Molecular and Cellular Biology (J.N.P.R., N.L.W.), Baylor College of Medicine, Houston, Texas 77030

2. Department of Scott Department of Urology (N.L.W.), Baylor College of Medicine, Houston, Texas 77030

Abstract

There is an inverse correlation between exposure to sunlight (the major source of vitamin D) and the risk for prostate cancer, the most common noncutaneous cancer and second most common cause of death from cancer in American men. The active metabolite of vitamin D, 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] acting through the vitamin D receptor decreases prostate cancer cell growth and invasiveness. The precise mechanisms by which 1,25(OH)2D3 inhibits growth in prostate cancer have not been fully elucidated. Treatment with 1,25(OH)2D3 causes an accumulation in the G0/G1 phase of the cell cycle in several prostate cancer cell lines. One potential target known to regulate the G0/G1 to S phase transition is c-Myc, a transcription factor whose overexpression is associated with a number of cancers including prostate cancer. We find that 1,25(OH)2D3 reduces c-Myc expression in multiple prostate epithelial cell lines, including C4-2 cells, an androgen-independent prostate cancer cell line. Reducing c-Myc expression to the levels observed after 1,25(OH)2D3 treatment resulted in a comparable decrease in proliferation and G1 accumulation demonstrating that down-regulation of c-Myc is a major component in the growth-inhibitory actions of 1,25(OH)2D3. Treatment with 1,25(OH)2D3 resulted in a 50% decrease in c-Myc mRNA but a much more extensive reduction in c-Myc protein. Treatment with 1,25(OH)2D3 decreased c-Myc stability by increasing the proportion of c-Myc phosphorylated on T58, a glycogen synthase kinase-3β site that serves as a signal for ubiquitin-mediated proteolysis. Thus, 1,25(OH)2D3 reduces both c-Myc mRNA levels and c-Myc protein stability to inhibit growth of prostate cancer cells.

Publisher

The Endocrine Society

Subject

Endocrinology

Reference76 articles.

1. Promise of vitamin D analogues in the treatment of hyperproliferative conditions.;Masuda;Mol Cancer Ther,2006

2. 25-Hydroxyvitamin D3, the prohormone of 1,25-dihydroxyvitamin D3, inhibits the proliferation of primary prostatic epithelial cells.;Barreto;Cancer Epidemiol Biomarkers Prev,2000

3. Prostate cancer risk and prediagnostic serum 25-hydroxyvitamin D levels (Finland).;Ahonen;Cancer Causes Control,2000

4. Sun exposure and prostate cancer risk: evidence for a protective effect of early-life exposure.;John;Cancer Epidemiol Biomarkers Prev,2007

5. Sun exposure, vitamin D receptor gene polymorphisms, and risk of advanced prostate cancer.;John;Cancer Res,2005

Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3