Androgen-Androgen Receptor System Protects against Angiotensin II-Induced Vascular Remodeling

Author:

Ikeda Yasumasa1,Aihara Ken-ichi1,Yoshida Sumiko1,Sato Takashi2,Yagi Shusuke1,Iwase Takashi1,Sumitomo Yuka1,Ise Takayuki1,Ishikawa Kazue1,Azuma Hiroyuki1,Akaike Masashi1,Kato Shigeaki34,Matsumoto Toshio1

Affiliation:

1. Department of Medicine and Bioregulatory Sciences (Y.I., K.A., S.Yo., S.Ya., T.Iw., Y.S., T.Is., K.I., H.A., M.A., T.M.), University of Tokushima Graduate School of Health Biosciences, Tokushima 770-8503, Japan

2. Institute for Molecular and Cellular Regulation (T.S.), Gunma University, Maebashi 371-8512, Japan

3. Institute of Molecular and Cellular Biosciences (S.K.), University of Tokyo, Tokyo 113-0032, Japan

4. Exploratory Research for Advanced Technology (ERATO) (S.K.), Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan

Abstract

Age-related andropause promotes cardiovascular disease in males. Although we had previously reported that the androgen-androgen receptor (AR) system plays important roles in cardiac growth and remodeling, the system’s involvement in vascular remodeling remains unclear. To clarify this role, 25-wk-old male AR knockout (ARKO) mice and littermate male wild-type (WT) mice were divided into two groups with and without angiotensin II (Ang II) administration (2.0 mg/kg · d) for 14 d, respectively. No morphological differences in the coronary artery and thoracic aorta were observed between the groups without Ang II. Ang II stimulation markedly increased medial thickness and perivascular fibrosis in ARKO mice, with enhanced TGF-β1, collagen type I, and collagen type III gene expression in the aorta. Ang II stimulation also prominently increased superoxide production, lipid peroxidation, and gene expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase components in ARKO mice compared with WT mice. In addition, phosphorylation of c-Jun N-terminal kinase (JNK) and phosphorylated (Smad2/3) was remarkably enhanced in Ang II-treated ARKO mice compared with Ang II-treated WT mice. Notably, daily urinary nitric oxide (NO) metabolites excretion as a marker of NO bioavailability, aortic endothelial NO synthase expression and phosphorylation, and Akt phosphorylation were significantly reduced in ARKO mice compared with WT mice, regardless of Ang II stimulation. In conclusion, the androgen-AR system is required for the preservation of NO bioavailability through Akt-endothelial NO synthase system activation and exerts protective effects against Ang II-induced vascular remodeling by regulating oxidative stress, c-Jun N-terminal kinase (JNK) signaling, and the TGF-β-phosphorylated Smad pathway.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3