Bacterial Lipopolysaccharide Induces an Endocrine Switch from Prostaglandin F2α to Prostaglandin E2 in Bovine Endometrium

Author:

Herath Shan1,Lilly Sonia T.1,Fischer Deborah P.1,Williams Erin J.1,Dobson Hilary2,Bryant Clare E.3,Sheldon I. Martin4

Affiliation:

1. Department of Veterinary Clinical Sciences (S.H., S.T.L., D.P.F., E.J.W.), Royal Veterinary College, London NW1 0TU, United Kingdom

2. Department of Veterinary Clinical Science and Animal Husbandry (H.D.), University of Liverpool, Neston CH64 7TE, United Kingdom

3. Department of Veterinary Medicine (C.E.B.), University of Cambridge, Cambridge CB3 0ES, United Kingdom

4. Institute of Life Science (I.M.S.), School of Medicine, Swansea University, Swansea SA2 8PP, United Kingdom

Abstract

Escherichia coli infection of the endometrium causes uterine disease after parturition and is associated with prolonged luteal phases of the ovarian cycle in cattle. Termination of the luteal phase is initiated by prostaglandin F2α (PGF) from oxytocin-stimulated endometrial epithelial cells. Compared with normal animals, the peripheral plasma of animals with E. coli infection of the endometrium had higher concentrations of lipopolysaccharide (LPS) and prostaglandin E2 (PGE) but not PGF. Endometrial explants accumulated predominantly PGE in the culture medium in response to LPS, and this effect was not reversed by oxytocin. Endometrial cells expressed the Toll-like receptor 4/CD14/MD-2 receptor complex necessary to detect LPS. Epithelial and stromal cells treated with LPS had higher steady-state media concentrations of PGE rather than PGF. Arachadonic acid is liberated from cell membranes by phospholipase 2 (PLA2) enzymes and converted to prostaglandins by synthase enzymes. Treatment of epithelial and stromal cells with LPS did not change the levels of PGE or PGF synthase enzymes. However, LPS stimulated increased levels of PLA2 group VI but not PLA2 group IV C immunoreactive protein in epithelial cells. Endometrial cells expressed the E prostanoid 2 and E prostanoid 4 receptors necessary to respond to PGE, which regulates inflammation as well as being luteotropic. In conclusion, LPS detection by endometrial cells stimulated the accumulation of PGE rather than PGF, providing a mechanism to explain prolonged luteal phases in animals with uterine disease, and this PGE may also be important for regulating inflammatory responses in the endometrium.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3