Stress Activation of Cortex and Hippocampus Is Modulated by Sex and Stage of Estrus

Author:

Figueiredo Helmer F.1,Dolgas Charles M.1,Herman James P.12

Affiliation:

1. Department of Psychiatry (H.F.F., C.M.D., J.P.H.), Neurobiology, and Anatomy, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0559

2. Department of Cell Biology (J.P.H.), Neurobiology, and Anatomy, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0559

Abstract

Abstract Sex plays a major role in stress integration and stress-related affective disease states. Notably, neurocircuits regulating organismic responses to stress are prime targets for central gonadal steroid action. To assess the roles of sex and estrous cycle in central stress integration, we analyzed c-fos mRNA expression in hypothalamic-pituitary-adrenocortical-related regions of stressed male and cycling female (proestrous, estrous, and diestrous) rats. At 60 min after the onset of acute restraint stress, all animal groups showed induction of c-fos mRNA in the frontal cortex, cingulate cortex, piriform cortex, hippocampus, hypothalamic paraventricular nucleus (PVN), medial amygdala, and lateral septum. However, the magnitude of c-fos induction in cortical and hippocampal regions was substantially lower in proestrous and estrous females compared with males and diestrous females. Sex- and estrus cycle-related changes are region specific, as no difference in c-fos induction occurred in the hypothalamic PVN, medial amygdala, or ventrolateral septum in any group. Furthermore, induction of c-fos mRNA in limbic cortexes (but not hippocampus) was positively correlated with progesterone and negatively correlated with ACTH levels. Taken together, this study indicates that cortical structures are differentially stress activated in females depending on the phase of the estrous cycle, perhaps in a progesterone-dependent fashion.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 126 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3