The CRE-Like Element Inside the 5′-Upstream Region of the Rat Sodium/Iodide Symporter Gene Interacts with Diverse Classes of b-Zip Molecules that Regulate Transcriptional Activities through Strong Synergy with Pax-8

Author:

Chun J. T.1,Di Dato V.1,D’Andrea B.2,Zannini M.2,Di Lauro R.1

Affiliation:

1. Department of Biochemistry and Molecular Biology (J.T.C., V.D.D., R.D.L.), Stazione Zoologica ‘Anton Dohrn,’ Villa Comunale, 80121 Napoli, Italy

2. Istituto di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche and Dept. di Biologia e Patologia Cellulare e Molecolare (B.D’A., M.Z.), Universita’ di Napoli Federico II, 80131 Napoli, Italy

Abstract

AbstractWe previously demonstrated that transcription of the rat sodium/iodide symporter (NIS) gene is regulated by NUE, an upstream enhancer located between nucleotides −2264 and −2495 of the 5′-flanking region. To elucidate the mechanism of TSH/cAMP-mediated regulation of NIS gene expression, we have characterized the putative cAMP response element (CRE)/activator protein (AP)-1 site (termed NUC) that is closely located between the two Pax-8 (paired box domain transcription factor-8) binding sites within NUE. In two different approaches using either gel supershift analyses or dominant-negative inhibitors of b-Zip molecules, we have shown that NUC can be recognized by several members of the AP-1 and CREB family transcription factors that modulate the transcriptional activity of NUE. Using tethered dimers of b-Zip molecules, we have also demonstrated that specific homo- or heterodimers of AP-1 can synergistically stimulate NUE activity in concert with Pax-8. To demonstrate further that NUC is a bona fide CRE, we made an artificial promoter with the five-time tandem repeat of this sequence (5xNUC). In comparison to the canonical CRE (5xCRE), 5xNUC manifested greater transcriptional activity and broader response to cAMP signaling. Hence, we postulate that the significance of this evolutionally conserved CRE-like site may lie in its broader cell type specificity.

Publisher

The Endocrine Society

Subject

Endocrinology,Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3