HLA Class II Allele Analyses Implicate Common Genetic Components in Type 1 and Non–Insulin-Treated Type 2 Diabetes

Author:

Jacobi Thomas1,Massier Lucas1,Klöting Nora1,Horn Katrin23,Schuch Alexander2,Ahnert Peter2,Engel Christoph23,Löffler Markus2,Burkhardt Ralph34,Thiery Joachim35,Tönjes Anke6,Stumvoll Michael16,Blüher Matthias16,Doxiadis Ilias7,Scholz Markus123,Kovacs Peter16ORCID

Affiliation:

1. University of Leipzig Medical Center, IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany

2. Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany

3. LIFE Research Centre for Civilization Diseases, University of Leipzig, Leipzig, Germany

4. Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany

5. Institute of Laboratory Medicine and Clinical Chemistry, University of Leipzig, Leipzig, Germany

6. Medical Department III – Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany

7. Institute for Transfusion Medicine, University Hospital of Leipzig, Leipzig, Germany

Abstract

Abstract Context Common genetic susceptibility may underlie the frequently observed co-occurrence of type 1 and type 2 diabetes in families. Given the role of HLA class II genes in the pathophysiology of type 1 diabetes, the aim of the present study was to test the association of high density imputed human leukocyte antigen (HLA) genotypes with type 2 diabetes. Objectives and Design Three cohorts (Ntotal = 10 413) from Leipzig, Germany were included in this study: LIFE-Adult (N = 4649), LIFE-Heart (N = 4815) and the Sorbs (N = 949) cohort. Detailed metabolic phenotyping and genome-wide single nucleotide polymorphism (SNP) data were available for all subjects. Using 1000 Genome imputation data, HLA genotypes were imputed on 4-digit level and association tests for type 2 diabetes, and related metabolic traits were conducted. Results In a meta-analysis including all 3 cohorts, the absence of HLA-DRB5 was associated with increased risk of type 2 diabetes (P = 0.001). In contrast, HLA-DQB*06:02 and HLA-DQA*01:02 had a protective effect on type 2 diabetes (P = 0.005 and 0.003, respectively). Both alleles are part of the well-established type 1 diabetes protective haplotype DRB1*15:01~DQA1*01:02~DQB1*06:02, which was also associated with reduced risk of type 2 diabetes (OR 0.84; P = 0.005). On the contrary, the DRB1*07:01~DQA1*02:01~DQB1*03:03 was identified as a risk haplotype in non–insulin-treated diabetes (OR 1.37; P = 0.002). Conclusions Genetic variation in the HLA class II locus exerts risk and protective effects on non–insulin-treated type 2 diabetes. Our data suggest that the genetic architecture of type 1 diabetes and type 2 diabetes might share common components on the HLA class II locus.

Funder

Deutsche Forschungsgemeinschaft

Federal Ministry of Education and Research

German Diabetes Association

Diabetes Hilfs- und Forschungsfonds Deutschland

Publisher

The Endocrine Society

Subject

Biochemistry (medical),Clinical Biochemistry,Endocrinology,Biochemistry,Endocrinology, Diabetes and Metabolism

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3