Paraneoplastic Secretion of Multiple Phosphatonins From a Deep Fibrous Histiocytoma Causing Oncogenic Osteomalacia

Author:

Leow Melvin Khee Shing12345,Dogra Shaillay1,Ge Xiaojia1,Chuah Khoon Leong6,Liew Huiling4,Loke Kelvin Siu Hoong7,McFarlane Craig18ORCID

Affiliation:

1. Singapore Institute for Clinical Sciences (A*STAR), Brenner Centre for Molecular Medicine, Singapore

2. Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore

3. Yong Loo Lin School of Medicine, National University of Singapore, Singapore

4. Department of Endocrinology, Division of Medicine, Tan Tock Seng Hospital, Singapore

5. Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore

6. Department of Pathology, Tan Tock Seng Hospital, Singapore

7. Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital, Singapore

8. Department of Molecular & Cell Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville QLD, Australia

Abstract

Abstract Context Literature suggests that oncogenic osteomalacia is usually caused by a benign mesenchymal tumor secreting fibroblast growth factor subtype-23 (FGF-23), but the involvement of other phosphatonins has only been scarcely reported. We have previously published a seemingly typical case of oncogenic osteomalacia. Following curative neoplasm resection, we now report unique molecular characteristics and biology of this tumor. Case Description A 25-year-old man had been diagnosed with severe oncogenic osteomalacia that gradually crippled him over 6 years. 68Ga-DOTA-TATE positron emission tomography/computed tomography scan localized the culprit tumor to his left sole, which on resection revealed a deep fibrous histiocytoma displaying a proliferation of spindle cells with storiform pattern associated with multinucleated giant cells resembling osteoclasts. Circulating FGF-23, which was elevated more than 2-fold, declined to undetectable levels 24 h after surgery. Microarray analysis revealed increased tumor gene expression of the phosphatonins FGF-23, matrix extracellular phosphoglycoprotein (MEPE) and secreted frizzled-related protein subtype 4, with elevated levels of all 3 proteins confirmed through immunoblot analysis. Differential expression of genes involved in bone formation and bone mineralization were further identified. The patient made an astonishing recovery from being wheelchair bound to fully self-ambulant 2 months postoperatively. Conclusion This report describes oncogenic osteomalacia due to a deep fibrous histiocytoma, which coincidentally has been found to induce profound muscle weakness via the overexpression of 3 phosphatonins, which resolved fully upon radical resection of the tumor. Additionally, genes involved in bone formation and bone remodeling contribute to the molecular signature of oncogenic osteomalacia.

Funder

Agency for Science, Technology and Research

Publisher

The Endocrine Society

Subject

Biochemistry (medical),Clinical Biochemistry,Endocrinology,Biochemistry,Endocrinology, Diabetes and Metabolism

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3