Insulin Signaling Is Preserved in Skeletal Muscle During Early Diabetic Ketoacidosis

Author:

Fisker Frederikke A1ORCID,Voss Thomas S1,Svart Mads V12,Kampmann Ulla1,Vendelbo Mikkel H3,Bengtsen Mads B12,Lauritzen Esben S12,Møller Niels12ORCID,Jessen Niels14ORCID

Affiliation:

1. Steno Diabetes Center Aarhus, Aarhus University Hospital , 8200 Aarhus N , Denmark

2. Department of Endocrinology and Internal Medicine, Aarhus University Hospital , 8200 Aarhus N , Denmark

3. Department of Nuclear Medicine, Aarhus University Hospital , 8200 Aarhus N , Denmark

4. Department of Biomedicine, Aarhus University , 8000 Aarhus C , Denmark

Abstract

Abstract Background and aims During diabetic ketoacidosis (DKA), muscle tissue develops a profound insulin resistance that complicates reversal of this potentially lethal condition. We have investigated mediators of insulin action in human skeletal muscle during total insulin withdrawal in patients with type 1 diabetes, under the hypothesis that initial phases of DKA are associated with impaired postreceptor signaling. Materials and methods Muscle biopsies were obtained during a randomized, controlled, crossover trial involving 9 patients with type 1 diabetes. The subjects were investigated during a high-dose insulin clamp preceded by either: (1) insulin-controlled euglycemia (control) or (2) total insulin withdrawal for 14 hours. Insulin action in skeletal muscle and whole-body substrate metabolism were investigated using western blot analysis and indirect calorimetry respectively. Results During insulin withdrawal, insulin-stimulated dephosphorylation of glycogen synthase decreased by ∼30% (P < .05) compared with the control situation. This was associated with a decrease in glucose oxidation by ∼30% (P < .05). Despite alterations in glucose metabolism, insulin transduction to glucose transport and protein synthesis (Akt, AS160, mammalian target of rapamycin, and eukaryotic translation initiation factor 4E binding protein) was intact, and glucose transporter (GLUT4) and mitochondrial proteins (succinate dehydrogenase complex, subunit A and prohibitin 1) protein expression were unaffected by the intervention. Conclusion DKA impairs insulin-stimulated activation of glycogen synthase, whereas insulin signal transduction to glucose transport and protein synthesis remains intact. Reversal of insulin resistance during treatment of DKA should target postreceptor mediators of glucose uptake. Clinical Trial Registration number NCT02077348.

Funder

Steno Diabetes Center Aarhus

Novo Nordisk Foundation

Publisher

The Endocrine Society

Subject

Biochemistry (medical),Clinical Biochemistry,Endocrinology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3