The Impact of Disuse and High-Fat Overfeeding on Forearm Muscle Amino Acid Metabolism in Humans

Author:

Wall Benjamin T1ORCID,Cruz Ana M12,Otten Britt1,Dunlop Mandy V1,Fulford Jonathan2,Porter Craig3,Abdelrahman Doaa Reda3,Stephens Francis B1,Dirks Marlou L1ORCID

Affiliation:

1. Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, UK

2. Exeter Medical School, University of Exeter, UK

3. Department of Surgery, University of Texas Medical Branch & Metabolism Unit, Shriners Hospital for Children, Galveston, USA

Abstract

Abstract Context Anabolic resistance is mechanistically implicated in muscle disuse atrophy. Objective The objective of this study is to assess whether anabolic resistance is associated with reduced postprandial amino acid uptake or exacerbated by excess lipid availability. Design, Setting, Participants, and Interventions Twenty men underwent 7 days of forearm immobilization while consuming a eucaloric (CON; n = 11) or high-fat overfeeding (HFD; n = 9; 50% excess energy as fat) diet (parallel design) within our Nutritional Physiology Research Unit. Main Outcome Measures Preimmobilization and postimmobilization we measured forearm muscle cross-sectional area (aCSA), and postabsorptive and postprandial (3-hour postingestion of a liquid, protein-rich, mixed meal) forearm amino acid metabolism using the arterialized venous-deep venous balance method and infusions of L-[ring-2H5]phenylalanine and L-[1-13C]leucine. Results Immobilization did not affect forearm muscle aCSA in either group, but tended to reduce postabsorptive phenylalanine (P = .07) and leucine (P = .05) net balances equivalently in CON and HFD. Mixed-meal ingestion switched phenylalanine and leucine net balances from negative to positive (P < .05), an effect blunted by immobilization (P < .05) and to a greater extent in HFD than CON (P < .05). Preimmobilization, meal ingestion increased leucine rates of disappearance (Rd; P < .05), with values peaking at 191% (from 87 ± 38 to 254 ± 60 µmol·min–1·100 mL forearm volume–1) and 183% (from 141 ± 24 to 339 ± 51 µmol·min–1·100 mL–1) above postabsorptive rates in CON and HFD, respectively, with meal-induced increases not evident postimmobilization in either group (P > .05). Conclusions Disuse impairs the ability of a protein-rich meal to promote positive muscle amino acid balance, which is aggravated by dietary lipid oversupply. Moreover, disuse reduced postprandial forearm amino acid uptake; however, this is not worsened under high-fat conditions.

Funder

The Physiological Society

Publisher

The Endocrine Society

Subject

Biochemistry (medical),Clinical Biochemistry,Endocrinology,Biochemistry,Endocrinology, Diabetes and Metabolism

Reference58 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3