CPT1A-mediated Fat Oxidation, Mechanisms, and Therapeutic Potential

Author:

Schlaepfer Isabel R1ORCID,Joshi Molishree2

Affiliation:

1. University of Colorado School of Medicine, Division of Medical Oncology, Aurora

2. University of Colorado School of Medicine, Department of Pharmacology, Aurora, Colorado

Abstract

Abstract Energy homeostasis during fasting or prolonged exercise depends on mitochondrial fatty acid oxidation (FAO). This pathway is crucial in many tissues with high energy demand and its disruption results in inborn FAO deficiencies. More than 15 FAO genetic defects have been currently described, and pathological variants described in circumpolar populations provide insights into its critical role in metabolism. The use of fatty acids as energy requires more than 2 dozen enzymes and transport proteins, which are involved in the activation and transport of fatty acids into the mitochondria. As the key rate-limiting enzyme of FAO, carnitine palmitoyltransferase I (CPT1) regulates FAO and facilitates adaptation to the environment, both in health and in disease, including cancer. The CPT1 family of proteins contains 3 isoforms: CPT1A, CPT1B, and CPT1C. This review focuses on CPT1A, the liver isoform that catalyzes the rate-limiting step of converting acyl-coenzyme As into acyl-carnitines, which can then cross membranes to get into the mitochondria. The regulation of CPT1A is complex and has several layers that involve genetic, epigenetic, physiological, and nutritional modulators. It is ubiquitously expressed in the body and associated with dire consequences linked with genetic mutations, metabolic disorders, and cancers. This makes CPT1A an attractive target for therapeutic interventions. This review discusses our current understanding of CPT1A expression, its role in heath and disease, and the potential for therapeutic opportunities targeting this enzyme.

Funder

American Cancer Society

Publisher

The Endocrine Society

Subject

Endocrinology

Reference125 articles.

1. beta-oxidation of fatty acids in mitochondria, peroxisomes, and bacteria: a century of continued progress;Kunau;Prog Lipid Res.,1995

2. Carnitine palmitoyltransferase 1A deficiency.;Bennett,1993

3. Carnitine;Odle;Adv Nutr.,2014

4. Pharmacokinetics of L-carnitine;Evans;Clin Pharmacokinet.,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3