Apolipoprotein A-IV Enhances Fatty Acid Uptake by Adipose Tissues of Male Mice via Sympathetic Activation

Author:

Zhu Qi1,Weng Jonathan2,Shen Minqian1,Fish Jace2,Shen Zhujun2,Coschigano Karen T2,Davidson W Sean3,Tso Patrick3,Shi Haifei1,Lo Chunmin C2ORCID

Affiliation:

1. Department of Biology, Miami University, Oxford, OH

2. Department of Biomedical Sciences and Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH

3. Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH

Abstract

Abstract Apolipoprotein A-IV (ApoA-IV) synthesized by the gut regulates lipid metabolism. Sympathetic innervation of adipose tissues also controls lipid metabolism. We hypothesized that ApoA-IV required sympathetic innervation to increase fatty acid (FA) uptake by adipose tissues and brown adipose tissue (BAT) thermogenesis. After 3 weeks feeding of either a standard chow diet or a high-fat diet (HFD), mice with unilateral denervation of adipose tissues received intraperitoneal administration of recombinant ApoA-IV protein and intravenous infusion of lipid mixture with radioactive triolein. In chow-fed mice, ApoA-IV administration increased FA uptake by intact BAT but not the contralateral denervated BAT or intact white adipose tissue (WAT). Immunoblots showed that, in chow-fed mice, ApoA-IV increased expression of lipoprotein lipase and tyrosine hydroxylase in both intact BAT and inguinal WAT (IWAT), while ApoA-IV enhanced protein levels of β3 adrenergic receptor, adipose triglyceride lipase, and uncoupling protein 1 in the intact BAT only. In HFD-fed mice, ApoA-IV elevated FA uptake by intact epididymal WAT (EWAT) but not intact BAT or IWAT. ApoA-IV increased sympathetic activity assessed by norepinephrine turnover (NETO) rate in BAT and EWAT of chow-fed mice, whereas it elevated NETO only in EWAT of HFD-fed mice. These observations suggest that, in chow-fed mice, ApoA-IV activates sympathetic activity of BAT and increases FA uptake by BAT via innervation, while in HFD-fed mice, ApoA-IV stimulates sympathetic activity of EWAT to shunt FAs into the EWAT.

Funder

Ohio University Heritage College of Osteopathic Medicine and Diabetes Institute

National Institutes of Health

Madalene and George Shetler Diabetes Research Award

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3