Molecular Basis of Neonatal Diabetes in Japanese Patients

Author:

Suzuki Shigeru1,Makita Yoshio1,Mukai Tokuo1,Matsuo Kumihiro1,Ueda Osamu1,Fujieda Kenji1

Affiliation:

1. Department of Pediatrics, Asahikawa Medical College, Asahikawa 078-8510, Japan

Abstract

Abstract Context: Neonatal diabetes mellitus (NDM) is classified clinically into a transient form (TNDM), in which insulin secretion recovers within several months, and a permanent form (PNDM), requiring lifelong medication. However, these conditions are genetically heterogeneous. Objective: Our objective was to evaluate the contribution of the responsible gene and delineate their clinical characteristics. Patients and Methods: The chromosome 6q24 abnormality and KCNJ11 and ABCC8 mutations were analyzed in 31 Japanese patients (16 with TNDM and 15 with PNDM). Moreover, FOXP3 and IPF1 mutations were analyzed in a patient with immune dysregulation, polyendocrinopathy, enteropathy X-linked syndrome and with pancreatic agenesis, respectively. Results: A molecular basis for NDM was found in 23 patients: 6q24 in eleven, KCNJ11 in nine, ABCC8 in two, and FOXP3 in one. All the patients with the 6q24 abnormality and two patients with the KCNJ11 mutation proved to be TNDM. Five mutations were novel: two (p.A174G and p.C166Y) in KCNJ11, two (p.A90V and p.N1122D) in ABCC8, and one (p.P367L) in FOXP3. Comparing the 6q24 abnormality and KCNJ11 mutation, there were some significant clinical differences: the earlier onset of diabetes, the lower frequency of diabetic ketoacidosis at onset, and the higher proportion of the patients with macroglossia at initial presentation in the patients with 6q24 abnormality. In contrast, two patients with the KCNJ11 mutations manifested epilepsy and developmental delay. Conclusions: Both the 6q24 abnormality and KCNJ11 mutation are major causes of NDM in Japanese patients. Clinical differences between them could provide important insight into the decision of which gene to analyze in affected patients first.

Publisher

The Endocrine Society

Subject

Biochemistry (medical),Clinical Biochemistry,Endocrinology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3