Protease-Resistant Insulin-Like Growth Factor (IGF)-Binding Protein-4 Inhibits IGF-I Actions and Neointimal Expansion in a Porcine Model of Neointimal Hyperplasia

Author:

Nichols T. C.1,Busby W. H.1,Merricks E.1,Sipos J.1,Rowland M.1,Sitko K.1,Clemmons D. R.1

Affiliation:

1. Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599

Abstract

IGF-I has been shown to play a role in the progression of atherosclerosis in experimental animal models. IGF-binding protein-4 (IGFBP-4) binds to IGF-I and prevents its association with receptors. Overexpression of a protease-resistant form of IGFBP-4 has been shown to inhibit the ability of IGF-I to stimulate normal smooth muscle cell growth in mice. Based on these observations, we prepared a protease-resistant form of IGFBP-4 and infused it into hypercholesterolemic pigs. Infusion of the protease-resistant mutant inhibited lesion development by 53.3 ± 6.1% (n = 6; P < 0.01). Control vessels that received an equimolar concentration of IGF-I and the protease-resistant IGFBP-4 showed no reduction in lesion size compared with control lesions that were infused with vehicle. Infusion of a nonmutated form of IGFBP-4 did not significantly inhibit lesion development. Proliferating cell nuclear antigen analysis showed that the mutant IGFBP-4 appeared to inhibit cell proliferation. The area occupied by extracellular matrix was also reduced proportionally compared with total lesion area. Immunoblotting revealed that the mutant IGFBP-4 remained intact, whereas the wild-type IGFBP-4 that was infused was proteolytically cleaved. Further analysis of the lesions revealed that a marker protein, IGFBP-5, whose synthesis is stimulated by IGF-I, was decreased in the lesions that received the protease-resistant, IGFBP-4 mutant, whereas there was no change in lesions that received wild-type IGFBP-4 or the mutant protein plus IGF-I. These findings clearly illustrate that infusion of protease-resistant IGFBP-4 into the perilesion environment results in inhibition of cell proliferation and attenuation of the development of neointima. The findings support the hypothesis that inhibiting IGFBP-4 proteolysis in the lesion microenvironment could be an effective means for regulating neointimal expansion.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3