Digenic Variants in the FGF21 Signaling Pathway Associated with Severe Insulin Resistance and Pseudoacromegaly

Author:

Stone Stephen I12ORCID,Wegner Daniel J3ORCID,Wambach Jennifer A3ORCID,Cole F Sessions3ORCID,Urano Fumihiko45ORCID,Ornitz David M2ORCID

Affiliation:

1. Department of Pediatrics, Division of Pediatric Endocrinology & Diabetes, Washington University School of Medicine, St. Louis, Missouri, US

2. Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, US

3. Department of Pediatrics, Division of Newborn Medicine, Washington University School of Medicine, St. Louis, Missouri, US

4. Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri, US

5. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, US

Abstract

Abstract Insulin-mediated pseudoacromegaly (IMPA) is a rare disease of unknown etiology. Here we report a 12-year-old female with acanthosis nigricans, hirsutism, and acromegalic features characteristic of IMPA. The subject was noted to have normal growth hormone secretion, with extremely elevated insulin levels. Studies were undertaken to determine a potential genetic etiology for IMPA. The proband and her family members underwent whole exome sequencing. Functional studies were undertaken to validate the pathogenicity of candidate variant alleles. Whole exome sequencing identified monoallelic, predicted deleterious variants in genes that mediate fibroblast growth factor 21 (FGF21) signaling, FGFR1 and KLB, which were inherited in trans from each parent. FGF21 has multiple metabolic functions but no known role in human insulin resistance syndromes. Analysis of the function of the FGFR1 and KLB variants in vitro showed greatly attenuated ERK phosphorylation in response to FGF21, but not FGF2, suggesting that these variants act synergistically to inhibit endocrine FGF21 signaling but not canonical FGF2 signaling. Therefore, digenic variants in FGFR1 and KLB provide a potential explanation for the subject’s severe insulin resistance and may represent a novel category of insulin resistance syndromes related to FGF21.

Funder

National Heart, Lung, and Blood Institute

National Institute of Child Health and Human Development

DRC at Washington University

National Center for Advancing Translational Sciences

National Institutes of Health

Children's Discovery Institute

Saigh Foundation

Publisher

The Endocrine Society

Subject

Endocrinology, Diabetes and Metabolism

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3