Detection of Functionally Active Melanocortin Receptors and Evidence for an Immunoregulatory Activity of α-Melanocyte-Stimulating Hormone in Human Dermal Papilla Cells

Author:

Böhm Markus,Eickelmann Mareike,Li Zhuo,Schneider Stefan W.,Oji Vinzenz,Diederichs Sven,Barsh Gregory S.,Vogt Annika,Stieler Karola,Blume-Peytavi Ulrike,Luger Thomas A.

Abstract

Proopiomelanocortin (POMC)-derived peptides and their receptors have been identified in many peripheral organs including the skin in which they exert a diversity of biological actions. We investigated the expression and potential role of the POMC system in human dermal papilla cells (DPCs), a specialized cutaneous mesenchymal cell type regulating hair follicle activity. In culture, these cells expressed POMC and displayed immunoreactivity for ACTH, αMSH, and β-endorphin. Among the prohormone convertases (PCs) tested, only PC2, its chaperone 7B2, and furin convertase but not PC1 and paired basic amino acid cleaving enzyme 4 gene were detected. Human DPCs in vitro expressed both the melanocortin-1 receptor (MC-1R) and MC-4R, and immunoreactivity for these receptors was also present in cells of the human dermal papilla in situ. In contrast to the dermal papilla of agouti mice, agouti signaling protein, a natural and highly selective MC-1R and MC-4R antagonist, was undetectable in human DPCs. The MC-Rs detected in human DPCs were functionally active because αMSH increased intracellular cAMP and calcium. Preincubation of the cells with a synthetic peptide corresponding to the C-terminal domain of agouti signaling protein abrogated cAMP induction by αMSH. Furthermore, αMSH was capable of antagonizing the expression of intercellular adhesion molecule-1 induced by the proinflammatory cytokine interferon-γ. Our data suggest a regulatory function of αMSH within the dermal papilla whose disruption may lead to deregulation of immune and inflammatory responses of the hair follicle, thereby possibly contributing to the development of inflammatory forms of alopecia.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3