Rapid Glucocorticoid-Mediated Endocannabinoid Release and Opposing Regulation of Glutamate and γ-Aminobutyric Acid Inputs to Hypothalamic Magnocellular Neurons

Author:

Di Shi,Malcher-Lopes Renato,Marcheselli Victor L.,Bazan Nicolas G.,Tasker Jeffrey G.

Abstract

Glucocorticoids secreted in response to stress activation of the hypothalamic-pituitary-adrenal axis feed back onto the brain to rapidly suppress neuroendocrine activation, including oxytocin and vasopressin secretion. Here we show using whole-cell patch clamp recordings that glucocorticoids elicit a rapid, opposing action on synaptic glutamate and γ-aminobutyric acid (GABA) release onto magnocellular neurons of the hypothalamic supraoptic nucleus and paraventricular nucleus, suppressing glutamate release and facilitating GABA release by activating a putative membrane receptor. The glucocorticoid effect on both glutamate and GABA release was blocked by inhibiting postsynaptic G protein activity, suggesting a dependence on postsynaptic G protein signaling and the involvement of a retrograde messenger. Biochemical analysis of hypothalamic slices treated with dexamethasone revealed a glucocorticoid-induced rapid increase in the levels of the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG). The glucocorticoid suppression of glutamate release was blocked by the type I cannabinoid receptor cannabinoid receptor antagonist, AM251, and was mimicked and occluded by AEA and 2-AG, suggesting it was mediated by retrograde endocannabinoid release. The glucocorticoid facilitation of GABA release was also blocked by AM251 but was not mimicked by AEA, 2-AG, or a synthetic cannabinoid, WIN 55,212–2, nor was it blocked by vanilloid or ionotropic glutamate receptor antagonists, suggesting that it was mediated by a retrograde messenger acting at an AM251-sensitive, noncannabinoid/nonvanilloid receptor at presynaptic GABA terminals. The combined, opposing actions of glucocorticoids mediate a rapid inhibition of the magnocellular neuroendocrine cells, which in turn should mediate rapid feedback inhibition of the secretion of oxytocin and vasopressin by glucocorticoids during stress activation of the hypothalamic-pituitary-adrenal axis.

Publisher

The Endocrine Society

Subject

Endocrinology

Reference45 articles.

1. Corticosteroid inhibition of ACTH secretion;Keller-Wood;Endocr Rev.,1984

2. Iontophoretic application of glucocorticoids inhibits identified neurones in the rat paraventricular nucleus;Saphier;Brain Res.,1988

3. Characterization of corticosterone feedback regulation of ACTH secretion;Dallman;Ann NY Acad Sci.,1987

4. Corticosterone inhibition of osmotically stimulated vasopressin from hypothalamic-neurohypophysial explants;Papanek;Am J Physiol.,1997

5. Glucocorticoid feedback inhibition of adrenocorticotropic hormone secretagogue release. Relationship to corticosteroid receptor occupancy in various limbic sites.;Sapolsky;Neuroendocrinology,1990

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3