Prolactin Specifically Activates Signal Transducer and Activator of Transcription 5b in Neuroendocrine Dopaminergic Neurons

Author:

Ma Frank Y.,Anderson Greg M.,Gunn Travis D.,Goffin Vincent,Grattan David R.,Bunn Stephen J.

Abstract

The hypothalamic neuroendocrine dopaminergic (NEDA) neurons are crucial in regulating prolactin secretion from the anterior pituitary. Rising prolactin concentrations stimulate these neurons to secrete dopamine, which acts via the pituitary portal vasculature to inhibit additional prolactin release. Prolactin is known to activate Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathways in other cell types, including neurons. The possible role of JAK-STAT signaling in NEDA neurons has therefore been examined in this study using fetal rat mediobasal hypothalamic cell cultures and an adult rat in vivo preparation. Cultured cells expressing the dopamine synthesizing enzyme tyrosine hydroxylase (TH) responded to prolactin with a time-dependent increase in phospho-STAT5, but not phospho-STAT1 or phospho-STAT3, nuclear labeling. This response was inhibited by the prolactin receptor antagonist Δ1–9-G129R-human prolactin and the JAK inhibitor AG490, but was unaffected by selected serine/threonine kinase inhibitors (H89, KN-93, bisindolymaleimide, or PD98059). Antibodies selective for STAT5a or STAT5b indicated that the response was restricted to STAT5b, with the number of TH cells displaying STAT5b nuclear immunoreactivity rising from less than 10% under basal conditions to approximately 70% after prolactin stimulation. STAT5a nuclear labeling remained unchanged at 6–10% of TH-positive cells. STAT5b selectivity was confirmed in vivo, where the injection of prolactin into bromocriptine-treated rats stimulated a time-dependent increase in STAT5b, but not STAT5a, nuclear staining in the TH-expressing neurons in the arcuate nucleus. These results extend our previous findings with STAT5b-deficient mice and strongly suggest that in NEDA neurons, prolactin signaling via the JAK/STAT pathway is mediated exclusively by STAT5b.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3