Hypothalamic and Hindbrain Melanocortin Receptors Contribute to the Feeding, Thermogenic, and Cardiovascular Action of Melanocortins

Author:

Skibicka Karolina P.1,Grill Harvey J.1

Affiliation:

1. Graduate Group of Psychology and Graduate Group of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania 19104

Abstract

Abstract Forebrain ventricular delivery of melanocortin receptor (MC3/4R) agonist increases energy expenditure and decreases food intake (FI). Because forebrain ventricular delivery provides ligand to various anatomically distributed MC3/4R-bearing nuclei, it is unclear which of the receptor subpopulations contributes to the feeding suppression and the sympathetic-thermogenic effects observed. The literature indicates that reexpression of MC4R in the paraventricular nucleus (PVH) affects the feeding but not the energetic phenotype of the MC4R knockout, suggesting that divergent MC4R populations mediate energy expenditure (hindbrain) and FI (hypothalamus) effects of stimulation. Not consistent with this view are data indicating that PVH sympathetic projection neurons express MC4Rs and that feeding effects are induced from hindbrain MC4R sites. Therefore, we hypothesize an opposing perspective: that stimulation of anatomically diverse MC3/4R-bearing nuclei triggers energetic as well as feeding effects. To test this hypothesis, ventricle subthreshold doses of MC3/4R agonist (5 and 10 pmol) were applied in separate experiments to six hindbrain and hypothalamic sites; core temperature (Tc), heart rate (HR), spontaneous activity (SPA), and FI were measured in behaving rats. Nucleus tractus solitarius and PVH stimulation increased Tc, HR, and SPA and decreased FI. Rostral ventrolateral medulla, parabrachial nucleus, and retrochiasmatic area stimulation increased Tc, HR, but not SPA, and decreased FI. The response profile differed to some extent for each nucleus tested, suggesting differential output circuitries for the measured parameters. Data are consistent with the view that energetic and feeding responses are not controlled by regionally divergent MC3/4Rs and can be elicited from multiple, anatomically distributed MC3/4R populations.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3