Gene Therapy with Neurogenin 3 and Betacellulin Reverses Major Metabolic Problems in Insulin-Deficient Diabetic Mice

Author:

Yechoor Vijay1,Liu Victoria1,Paul Antoni1,Lee Jeongkyung1,Buras Eric1,Ozer Kerem1,Samson Susan1,Chan Lawrence1

Affiliation:

1. Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030

Abstract

Insulin deficiency in type 1 diabetes leads to disruptions in glucose, lipid, and ketone metabolism with resultant hyperglycemia, hyperlipidemia, and ketonemia. Exogenous insulin and hepatic insulin gene therapy cannot mimic the robust glucose-stimulated insulin secretion (GSIS) from native pancreatic islets. Gene therapy of streptozotocin-diabetic mice with neurogenin 3 (Ngn3) and betacellulin (Btc) leads to the induction of periportal oval cell-derived neo-islets that exhibit GSIS. We hence hypothesized that this gene therapy regimen may lead to a complete correction of the glucose and lipid metabolic abnormalities associated with insulin deficiency; we further hypothesized that the neo-islets formed in response to Ngn3-Btc gene delivery may display an ultrastructure and transcription profile similar to that of pancreatic islets. We injected streptozotocin-diabetic mice with helper-dependent adenoviral vectors carrying Ngn3 and Btc, which restored GSIS and reversed hyperglycemia in these animals. The treatment also normalized hepatic glucose secretion and reversed ketonemia. Furthermore, it restored hepatic glycogen content and reinstated hepatic lipogenesis-related gene transcripts back to nondiabetic levels. By transmission electron microscopy, the neo-islets displayed electron-dense granules that were similar in appearance to those in pancreatic islets. Finally, using RNA obtained by laser capture microdissection of the periportal neo-islets and normal pancreatic islets, we found that the neo-islets and pancreatic islets exhibited a very similar transcription profile on microarray-based transcriptome analysis. Taken together, this indicates that Ngn3-Btc gene therapy corrects the underlying dysregulated glucose and lipid metabolism in insulin-deficient diabetic mice by inducing neo-islets in the liver that are similar to pancreatic islets in structure and gene expression profile.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3