In Vivo Molecular Imaging of Somatostatin Receptors in Pancreatic Islet Cells and Neuroendocrine Tumors by Miniaturized Confocal Laser-Scanning Fluorescence Microscopy

Author:

Fottner C.1,Mettler E.1,Goetz M.1,Schirrmacher E.2,Anlauf M.3,Strand D.1,Schirrmacher R.2,Klöppel G.4,Delaney P.5,Schreckenberger M.6,Galle P. R.1,Neurath M. F.1,Kiesslich R.1,Weber M. M.1

Affiliation:

1. I. Medical Clinic (C.F., E.M., M.G., D.S., P.R.G., M.F.N., R.K., M.M.W.), University of Mainz, 55131 Mainz, Germany

2. Department of Neurology and Neurosurgery (E.S., R.S.), McGill University, Montréal, Québec, Canada H9X 3V9

3. Institute of Pathology (M.A.), University of Duesseldorf, 40225 Duesseldorf, Germany

4. Institute of Pathology (G.K.), Technical University, 80802 Munich, Germany

5. Optiscan Pty. Ltd. (P.D.), Notting Hill, Victoria 3168, Australia

6. Department of Nuclear Medicine (M.S.), University of Mainz, 55131 Mainz, Germany

Abstract

The aim of the study was to evaluate real time in vivo molecular imaging of somatostatin receptors (sstrs) using a handheld miniaturized confocal laser scan microscope (CLM) in conjunction with fluorescein-labeled octreotate (OcF) in healthy mice and murine models of neuroendocrine tumors. For CLM a small rigid probe (diameter 7 mm) with an integrated single line laser (488 nm) was used (optical slice thickness 7 μm; lateral resolution 0.7 μm). OcF was synthesized via Fmoc solid-phase peptide synthesis and purified by HPLC showing high-affinity binding to the sstr2 (IC50 6.2 nmol). For in vitro evaluation, rat and human pancreatic cancer cells were used and characterized with respect to its sstr subtype expression and functional properties. For in vivo confocal imaging, healthy mouse pancreatic islet and renal tubular cells as well as immunoincompetent nude mice harboring sstr-expressing tumors were evaluated. Incubation of sstr-positive cells with OcF showed a specific time- and dose-dependent staining of sstr-positive cells. CLM showed rapid internalization and homogenous cytoplasmatic distribution. After systemic application to mice (n = 8), specific time-dependent internalization and cytoplasmatic distribution into pancreatic islet cells and tubular cells of the renal cortex was recorded. After injection in tumor-harboring nude mice (n = 8), sstr-positive cells selectively displayed a cell surface and cytoplasmatic staining. CLM-targeted biopsies detected sstr-positive tumor cells with a sensitivity of 87.5% and a specificity of 100% as correlated with ex vivo immunohistochemistry. CLM with OcF permits real-time molecular, functional, and morphological imaging of sstr-expressing cell structures, allowing the specific visualization of pancreatic islet cells and neuroendocrine tumors in vivo.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3