Growth Hormone Secretagogues Reduce Transient Outward K+ Current via Phospholipase C/Protein Kinase C Signaling Pathway in Rat Ventricular Myocytes

Author:

Sun Qiang123,Zang Wei-Jin1,Chen Chen23

Affiliation:

1. Department of Pharmacology (Q.S., W.J.Z.), School of Medicine, Xi’an Jiaotong University, Xi’an 710061, China

2. Prince Henry’s Institute of Medical Research (Q.S., C.C.), Clayton, Victoria 3168, Australia

3. School of Biomedical Sciences (Q.S., C.C.), University of Queensland, St. Lucia, Queensland 4072, Australia

Abstract

Endogenous ghrelin and its synthetic counterpart hexarelin are peptide GH secretagogues (GHS) that exert a positive ionotropic effect in the cardiovascular system. The mechanism by which GHS modulate cardiac electrophysiology properties to alter myocyte contraction is poorly understood. In the present study, we examined whether GHS regulates the transient outward potassium current (Ito) as well as the putative intracellular signaling cascade responsible for such regulation. GHS and experimental agents were applied locally onto freshly isolated adult Sprague-Dawley rat ventricular myocytes and action potential morphology and Ito was recorded using nystatin-perforated whole-cell patch-clamp recording technique. Under current clamp, ghrelin and hexarelin (10 nm) significantly prolonged action potential duration. Under voltage clamp, hexarelin and ghrelin inhibited Ito in a concentration-dependent manner. This inhibition was abolished in the presence of the GHS receptor (GHS-R) antagonist [d-Lys3]GH-releasing peptide-6 (10 μm) and GHS-R1a-specific antagonist BIM28163 (1 μm). GHS-induced Ito inhibition was totally reversed by the phospholipase C inhibitor U73122 (5 μm) and protein kinase C inhibitors GÖ6983 (1 μm) and calphostin C (0.1 μm) but not by the cAMP antagonist Rp-cAMP (100 μm) or the PKA inhibitor H89 (1 μm). We conclude that hexarelin and ghrelin activate phospholipase C and protein kinase C signaling cascade through the stimulation of the GHS-R, resulting in a decrease in the Ito current and subsequent prolongation of action potential duration.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3