Septopreoptic μ Opioid Receptor Mediation of Hindbrain Glucoprivic Inhibition of Reproductive Neuroendocrine Function in the Female Rat

Author:

Singh Sushma R.,Briski Karen P.

Abstract

Abstract Central glucostasis is a critical monitored variable in neuroendocrine regulation of pituitary LH secretion. Glucoprivic signals originating within the caudal hindbrain suppress LH. Septopreoptic μ opioid receptors (μ-R) function within neural pathways maintaining basal LH levels and mediate the effects of diverse physiological stimuli on hormone release. To identify potential sites in the septopreoptic area where ligand neuromodulatory actions may occur in response to hindbrain glucoprivic signaling, the present studies evaluated the distribution of μ-R-immunoreactive (-ir) neurons in the septopreoptic area that are genomically activated in response to caudal fourth ventricular (CV4) delivery of the glucose antimetabolite, 5-thioglucose (5TG). The effects of lateral ventricular pretreatment with the selective μ-R antagonist, d-Phe-Cys-Tyr-d-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP), on LH secretory and GnRH neuronal transcriptional responses to hindbrain glucoprivation were also evaluated. Estradiol benzoate- and progesterone-primed, ovariectomized female rats were treated by CV4 administration of 5TG or the vehicle, saline, at the onset of the afternoon LH surge. The inhibitory effects of hindbrain glucoprivation on mean plasma LH levels as well as colabeling of rostral preoptic GnRH neurons for Fos-ir were attenuated in animals pretreated by lateral ventricular delivery of CTOP. Dual immunocytochemical labeling for septopreoptic μ-R-ir and Fos-ir demonstrated a robust induction of Fos expression by receptor-positive neurons within discrete septopreoptic sites in response to CV4 5TG, a genomic response that was diminished by CTOP pretreatment. The current studies provide novel evidence for the transcriptional activation of neuroanatomically characterized, μ-R-expressing neurons by decreased hindbrain glucose utilization and show that the functional status of μ-R is critical for maximal induction of the Fos stimulus-transcription cascade in these cells by central glucoprivic signaling. The finding that receptor antagonist-mediated suppression of this genomic response is correlated with increased reproductive neuroendocrine output supports a role for these discrete μ-R-expressing neuron populations as substrates for ligand regulatory effects on the GnRH-pituitary LH axis during neuroglucopenia.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3