The Placental Variant of Human Growth Hormone Reduces Maternal Insulin Sensitivity in a Dose-Dependent Manner in C57BL/6J Mice

Author:

Liao Shutan123,Vickers Mark H.12,Stanley Joanna L.12,Ponnampalam Anna P.12,Baker Philip N.12,Perry Jo K.12

Affiliation:

1. Liggins Institute (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), University of Auckland, Auckland 1023, New Zealand

2. Gravida: National Centre for Growth and Development (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), Auckland 1142, New Zealand

3. The First Affiliated Hospital (S.L.), Sun Yat-sen University, 510080 Guangzhou, China

Abstract

Abstract The human placental GH variant (GH-V) is secreted continuously from the syncytiotrophoblast layer of the placenta during pregnancy and is thought to play a key role in the maternal adaptation to pregnancy. Maternal GH-V concentrations are closely related to fetal growth in humans. GH-V has also been proposed as a potential candidate to mediate insulin resistance observed later in pregnancy. To determine the effect of maternal GH-V administration on maternal and fetal growth and metabolic outcomes during pregnancy, we examined the dose-response relationship for GH-V administration in a mouse model of normal pregnancy. Pregnant C57BL/6J mice were randomized to receive vehicle or GH-V (0.25, 1, 2, or 5 mg/kg · d) by osmotic pump from gestational days 12.5 to 18.5. Fetal linear growth was slightly reduced in the 5 mg/kg dose compared with vehicle and the 0.25 mg/kg groups, respectively, whereas placental weight was not affected. GH-V treatment did not affect maternal body weights or food intake. However, treatment with 5 mg/kg · d significantly increased maternal fasting plasma insulin concentrations with impaired insulin sensitivity observed at day 18.5 as assessed by homeostasis model assessment. At 5 mg/kg · d, there was also an increase in maternal hepatic GH receptor/binding protein (Ghr/Ghbp) and IGF binding protein 3 (Igfbp3) mRNA levels, but GH-V did not alter maternal plasma IGF-1 concentrations or hepatic Igf-1 mRNA expression. Our findings suggest that at higher doses, GH-V treatment can cause hyperinsulinemia and is a likely mediator of the insulin resistance associated with late pregnancy.

Publisher

The Endocrine Society

Subject

Endocrinology

Reference100 articles.

1. The human growth-hormone gene locus—structure, evolution, and allelic variations;Hirt;DNA J Mol Cell Biol,1987

2. Physiological role of human placental growth hormone;Alsat;Mol Cell Endocrinol,1998

3. Growth-hormone 24-h serum profiles during pregnancy—lack of pulsatility for the secretion of the placental variant;Eriksson;Br J Obstet Gynaecol,1989

4. Human placental growth hormone;Alsat;Am J Obstet Gynecol,1997

5. Does the physiological acromegaly of pregnancy benefit the fetus?;Verhaeghe;Gynecol Obstet Invest,2008

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3