Dronerarone Acts as a Selective Inhibitor of 3,5,3′-Triiodothyronine Binding to Thyroid Hormone Receptor-α1: In Vitro and in Vivo Evidence

Author:

van Beeren H. C.1,Jong W. M. C.1,Kaptein E.2,Visser T. J.2,Bakker O.1,Wiersinga W. M.1

Affiliation:

1. Departments of Endocrinology and Metabolism, and Cardiology (W.M.C.J.), Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;

2. Department of Internal Medicine, Erasmus University Medical Center (E.K., T.J.V.), 3015 GE Rotterdam, The Netherlands

Abstract

Dronedarone (Dron), without iodine, was developed as an alternative to the iodine-containing antiarrhythmic drug amiodarone (AM). AM acts, via its major metabolite desethylamiodarone, in vitro and in vivo as a thyroid hormone receptor α1 (TRα1) and TRβ1 antagonist. Here we investigate whether Dron and/or its metabolite debutyldronedarone inhibit T3 binding to TRα1 and TRβ1in vitro and whether dronedarone behaves similarly to amiodarone in vivo. In vitro , Dron had a inhibitory effect of 14% on the binding of T3 to TRα1, but not on TRβ1. Desethylamiodarone inhibited T3 binding to TRα1 and TRβ1 equally. Debutyldronedarone inhibited T3 binding to TRα1 by 77%, but to TRβ1 by only 25%. In vivo , AM increased plasma TSH and rT3, and decreased T3. Dron decreased T4 and T3, rT3 did not change, and TSH fell slightly. Plasma total cholesterol was increased by AM, but remained unchanged in Dron-treated animals. TRβ1-dependent liver low density lipoprotein receptor protein and type 1 deiodinase activities decreased in AM-treated, but not in Dron-treated, animals. TRα1-mediated lengthening of the QTc interval was present in both AM- and Dron-treated animals. The in vitro and in vivo findings suggest that dronedarone via its metabolite debutyldronedarone acts as a TRα1-selective inhibitor.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3