Biological Effect of a Novel Mutation in the Third Leucine-Rich Repeat of Human Luteinizing Hormone Receptor

Author:

Leung Michael Yiu-Kwong1,Steinbach Peter J.2,Bear Deborah1,Baxendale Vanessa1,Fechner Patricia Y.3,Rennert Owen M.1,Chan Wai-Yee14

Affiliation:

1. Laboratory of Clinical Genomics (M.Y.-K.L., D.B., V.B., O.M.R., W.-Y.C.), Bethesda, Maryland 20892;

2. National Institute of Child Health and Human Development, and Center for Molecular Modeling (P.J.S.), Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892;

3. Department of Pediatrics (P.Y.F.), Stanford University, Stanford, California 94305;

4. Department of Pediatrics (W.-Y.C.), Georgetown University, Washington, D.C. 20007

Abstract

AbstractA novel heterozygous mutation A340T leading to the substitution of Phe for the conserved amino acid Ile114 was identified by nucleotide sequencing of the human LH/chorionic gonadotropin receptor (hLHR) of a patient with Leydig cell hypoplasia. This mutation is located in the third leucine-rich repeat in the ectodomain of the hLHR. In vitro expression studies demonstrated that this mutation results in reduced ligand binding and signal transduction of the receptor. Studies of hLHR constructs in which various amino acids were substituted for the conserved Ile114 showed that receptor activity is sensitive to changes in size, shape, and charge of the side chain. A homology model of the wild-type hLHR ectodomain was made, illustrating the packing of conserved hydrophobic side chains in the protein core. Substitution of Ile114 by Phe might disrupt intermolecular contacts between hormone and receptor. This mutation might also affect an LHR-dimer interaction. Thus, the I114F mutation reduces ligand binding and signal transduction by the hLHR, and it is partially responsible for Leydig cell hypoplasia in the patient.

Publisher

The Endocrine Society

Subject

Endocrinology,Molecular Biology,General Medicine

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3