Study of features of bioaccumulation and pathomorphological changes in tissues of rat organs after a single inhalation exposure to molybdenum (VI) oxide nanoparticles in comparison with a microdisperse analogue

Author:

Zaitseva Nina V.1ORCID,Zemlyanova Marina A.2ORCID,Stepankov Mark S.1ORCID,Ignatova Anna M.3ORCID,Nikolaeva Alena E.1ORCID

Affiliation:

1. Federal Scientific Center for Medical and Preventive Health Risk Management Technologies

2. Federal Scientific Center for Medical and Preventive Health Risk Management Technologies; Perm State National Research University; Perm National Research Polytechnic University

3. Federal Scientific Center for Medical and Preventive Health Risk Management Technologies; Institute of Continuum Mechanics of the Ural Branch of the Russian Academy of Sciences

Abstract

Introduction. Nanoparticles of molybdenum (VI) oxide (MoO3 NPs) are used in the production of nanooptics, products of the electrochemical, textile and chemical industries. Currently, the possibility of their application in the fields of oil refining and nanoelectronics is also being considered. Expanding the range of application of MoO3 NPs can lead to air pollution, exposure of the population and the development of negative effects due to the toxic properties of this nanomaterial. In this regard, there is a need to study the toxicity of MoO3 NPs under the inhalation. Materials and methods. The size, surface area, and total pore volume of MoO3 NPs were determined. A study included assessing of bioaccumulation and pathomorphological changes in tissues of rats organs after a single inhalation exposure to MoO3 NPs compared with a microsized chemical analogue. Results. The NPs size was 662.5 nm, which is 5.15 times less than microparticles (MP) (3410 nm). The surface area of the nanomaterial is 3.66 m2/g, which is 1.17 times more than MPs (3.14 m2/g); the total volume of pores located on the surface of NPs was 0.0133 cm3/g, which exceeds this parameter in NPs by 1.18 times (0.0113 cm3/g). An increase in the concentration of molybdenum in the heart, lungs, liver, kidneys and brain of rats 14 days after single inhalation exposure to MoO3 NPs and MPs was not found. Pathological changes in the tissues of lungs, brain and liver of exposed rats were established. A more pronounced toxic effect of NPs in comparison with MPs was shown in acute plethora and the development of reactive follicles in the lungs. Limitations. The study was performed only with a single inhalation administration of NPs and MPs of MoO3 in Wistar rats. Conclusion. The tested material is a product of the nanoindustry. It does not possess of bioaccumulation after single inhalation exposure. It causes more pronounced pathomorphological changes in the lung tissues in comparison with the micromaterial. The obtained results should be taken into account when developing preventive measures for workers and the public exposed to MoO3 NPs and improving the methodology for hygienic regulation of new chemicals.

Publisher

Federal Scientific Center for Hygiene F.F.Erisman

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Pollution,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3