Biotransformation of urea in the water of water bodies

Author:

Abramov Evgeny G.1,Malysheva Alla G.1ORCID

Affiliation:

1. Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency

Abstract

Introduction. The transformation of substances is an urgent problem of environmental hygiene. Urea (carbamide) is a product of human and animal life - enters water objects with household collector wastewater, surface runoff in areas that use urea as fertilizer, waste discharges from livestock complexes, and effluents of enterprises that produce carbamide. Two aspects of the problems associated with urea contamination of water bodies can be identified: the lack of a direct instrumental method for controlling urea and the lack of a comprehensive approach to controlling urea and its biotransformation products: ammonium, nitrites and nitrates. These two factors determined the relevance of the research. Materials and methods. The studies used the «Stayer» ionic chromatography system with anionic and cationic separation columns: Phenomenex Star-Ion A-300 100/4.6 USA; Shodex IC YS-50 150/4.6 Japan; when developing the urea analysis method, the «Aquilon» cationic column AQULINE C1P, 5µ,150/4.6 was used. The detection is conductometric and amperometric. The research objects were: surface, bottled, tap water, model water solutions of carbamide. As a urease source, the soil (sod-podzolic) from the Educational and Experimental Soil-Ecological Center of the Lomonosov Moscow State University “Chashnikovo” was used. Results. A new highly sensitive ion chromatographic method for determining urea in the water of various water bodies with a sensitivity of 5 mg/dm3 with direct sample input and using sample preparation - 0.5 mg/dm3 is proposed. The results of studies of model aqueous solutions of urea, surface water, tap water of Moscow, many bottled water samples on the content of urea and products of its biochemical transformation are presented. The presence of urea in the surface water and tap water of Moscow was revealed, and a correlation between the urea content and ammonium ions, nitrites and nitrates in the water was stated. Limitations of the study. The studies were carried out with waters whose total mineralization did not exceed 15 mg-eq/dm3 (water of river Don), and the urea content established in the water samples was not lower than 0.5 mg/dm3. Conclusion. When monitoring urea contamination of various water bodies, it is necessary to consider the products of its biotransformation under the action of urease, for as a result of the processes of urea biotransformation, a low-toxic substance can form more toxic products: nitrites, nitrates and ammonium. Applying the kinetic approach to study the processes of urea biotransformation in water under model conditions showed that the extreme type of kinetic curves corresponds to the formation of intermediate products - nitrites, and the increasing type corresponds to the formation and accumulation of final products - nitrates and ammonium ions.

Publisher

Federal Scientific Center for Hygiene F.F.Erisman

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Pollution,General Medicine

Reference30 articles.

1. Malysheva A.G., Kozlova N.Yu., Yudin S.M. The unaccounted hazard of processes of substances transformation in the environment in the assessment of the effectiveness of the application of technologies. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2018; 97(6): 490–7. https://doi.org/10.18821/0016-9900-2018-97-6-490-497 (in Russian)

2. Malysheva A.G., Rakhmanin Yu.A. Physical and Chemical Studies and Methods of Control of Substances in Environmental Hygiene [Fiziko-khimicheskie issledovaniya i metody kontrolya veshchestv v gigiene okruzhayushchey sredy]. St. Petersburg: Professional; 2012. (in Russian)

3. Malysheva A.G., Yudin S.M. Transformation of chemicals in the environment as an overlooked hazard factor for public health. Khimicheskaya bezopasnost’. 2019; 3(2): 45–66. https://doi.org/10.25514/CHS.2019.2.16005 (in Russian)

4. Nekrasova L.P., Malysheva A.G., Abramov E.G. Transformation of phenol and diatomic phenols in surface water under the action of natural physico-chemical factors. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2019; 98(11): 1206–11. https://doi.org/10.18821/0016-9900-2019-98-11-1206-1211 (in Russian)

5. Karrer P. Lehrbuch der Organischen Chemie. Shtutgart: Georg Thieme Verlag; 1959.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3