Ground state solution for a class of supercritical Hénon equation with variable exponent
-
Published:2023-09-23
Issue:
Volume:
Page:1-21
-
ISSN:1230-3429
-
Container-title:Topological Methods in Nonlinear Analysis
-
language:
-
Short-container-title:TMNA
Abstract
This paper is concerned with the following supercritical Hénon equation with variable exponent
$$
\begin{cases}
-\Delta u=|x|^{\alpha}|u|^{2^*_\alpha-2+|x|^\beta}u&\text{in } B,\\
u=0 &\text{on } \partial B,
\end{cases}
$$%
where $B\subset\mathbb{R}^N$ $(N\geq 3)$ is the unit ball, $\alpha\!> \!0$,
$ 0\!< \!\beta\!< \!\min\{(N\!+\!\alpha)/2,N\!-\!2\}$ and $2^*_\alpha=({2N+2\alpha})/({N-2})$.
We obtain the existence of positive ground state solution by applying the mountain
pass theorem, concentration-compactness principle and approximation techniques.
Publisher
Uniwersytet Mikolaja Kopernika/Nicolaus Copernicus University
Subject
Applied Mathematics,Analysis