Abstract
In this article, we establish the existence of positive and multiple
sign-changing solutions to the fractional $p$-Laplacian equation with purely critical nonlinearity
\begin{equation}
\label{Ppomegas-a}\tag{P$_{p,\Omega}^{s}$}
\begin{cases}
(-\Delta)_{p}^s u =|u|^{p_s^*-2} u& \text{in }\Omega, \\
u =0 & \text{on }\Omega^{c},
\end{cases}
\end{equation}
in a bounded domain $\Omega\subset \mathbb{R}^{N}$ for $s\in (0,1)$,
$p\in (1,\infty)$, and the fractional critical Sobolev exponent
$p^{*}_{s}={Np}/({N-sp})$ under some symmetry assumptions.
We study Struwe's type global compactness results for the Palais-Smale sequence
in the presence of symmetries.
Publisher
Uniwersytet Mikolaja Kopernika/Nicolaus Copernicus University
Subject
Applied Mathematics,Analysis