Salinity drift prevention experiments in the Korea ocean research stations and suggestions for high quality salinity observation

Author:

Lee Jaeik,Lee Suchan,Jeong Jongmin,Min Yongchim,Jeong Jin-Yong,Kim Yong Sun

Abstract

The importance of salinity has been highlighted to cope with climate changes and disaster prevention. The salinity of accuracy up to 0.005 is normally required in an open ocean to understand various oceanic and climatic phenomena; however, the reliability of salinity measured on the coast and open seas around Korea was low due to the lack of a standardized observation system and post-processing of quality verification. Korea Ocean Research Stations (KORS) has been producing salinity time series since 2003 through the Aanderaa conductivity-temperature (CT) 3919 inductive sensors, which have an advantage of on-site maintenance but tend to drift toward a lower conductivity because of biological attachments to the sensor. This study applied copper taping and UV light exposure techniques to the sensors and then compared its salinity measurements with RBR CTD mooring observations and SeaBird19 CTD profiles to assess a biofouling effect on salinity observations. This experiment shows that the salinity from the CT sensor without biofouling prevention starts to drift in a week, particularly for a surface sensor. This biofouling induced the decrease of salinity up to 10 in a month. The copper taping methodology efficiently suppressed the biological attachment but disturbed an electromagnetic field around the sensor, thus resulting in unrealistic salinity values. When UV light was periodically exposed at a distance of about 5 cm away from the CT sensor, relatively stable salinity could be observed without significant drift at least in two months. Besides, the SBE37 CTD, an electrode-type sensor, seems to be relatively free from biofouling but has difficulties in sensor maintenance and a sensor calibration process. Our results underline a double installation of salinity observation equipment with UV light exposure. In addition, the pre-calibration of a CT(D) sensor and post-verification should be included in a standard procedure for high-quality salinity measurement.

Funder

Ministry of Oceans and Fisheries

Korea Institute of Marine Science and Technology promotion

National Research Foundation of Korea

Korea Institute of Ocean Science and Technology

Publisher

Korea Society of Coastal Disaster Prevention

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3