Factors affecting the oedometric modulus of till soil

Author:

Lekstutytė Ieva,Urbaitis Donatas,Žaržojus Gintaras,Skuodis Šarūnas,Gadeikis Saulius

Abstract

Soil deformation moduli are affected by a number of factors including the intensity of applied load in drained or undrained conditions, stress-strain characteristics, confining pressure, stress history, and soil type. Determination of the deformation properties of glacial soils requires long-term research. As evidenced by a review of previous studies, Lithuanian glacial soils are still insufficiently explored. Our study focuses on the deformation properties of till soil, specifically, on the properties that have a significant impact on soil settlement or compressibility, and its calculations. The current study presents the oedometer deformation modulus determined and predicted under stress at 0.2 and 0.4 MPa levels, which are most often used in geotechnical design. These index values allowed identifying the major factors responsible for the variation in deformation behaviour of different groups of till soils. The most significant finding of this study was the absence of a direct correlation between the oedometer modulus (Eoed) and cone resistance (qc). Instead, based on the content of natural soil water (w), proportion of fine fraction (clay), and cone resistance (qc), we found that the most reliable correlation exists between the determined (EDoed) and estimated (EEoed) oedometer moduli. It is important to note that regression models are applicable and reliable only within specific ranges of these factors. The valid limits for these models are: water content in the range of 7.7%–15.4%, clay fraction in the range of 4.0%–20.0%, and cone resistance in the range of 1 MPa–5 MPa.

Publisher

Association of Lithuanian Serials (Publications)

Subject

Earth and Planetary Sciences (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3