Fixed Parameter Algorithms and Hardness of Approximation Results for the Structural Target Controllability Problem

Author:

Czeizler EugenORCID, ,Popa AlexandruORCID,Popescu Victor, ,

Abstract

Recent research has revealed new and unexpected applications of network control science within biomedicine, pharmacology, and medical therapeutics. These new insights and new applications generated in turn a rediscovery of some old, unresolved algorithmic problems. One of these problems is the Structural Target Control optimization problem, known in previous literature also as Structural Output Controllability problem, which is defined as follows. Given a directed network and a target subset of nodes, the task is to select a small (or the smallest) set of nodes from which the target can be independently controlled, i.e., there exists a set of paths from the selected set of nodes (called driver nodes) to the target nodes such that no two paths intersect at the same distance from their targets. Recently, Structural Target Control optimization problem has been shown to be NP-hard, and several heuristic algorithms were introduced and analyzed, both on randomly generated networks, and on biomedical ones. In this paper, we show that the Structural Target Controllability problem is fixed parameter tractable when parameterized by the number of target nodes. We also prove that the problem is hard to approximate at a factor better than O(log n). Taking into consideration the real case formulations of this problem we identify two more parameters which are naturally constrained by smaller bounds: the maximal length of a controlling path and the size of the set of nodes from which the control can start. With these new parameters we provide an approximation algorithm which is of exponential complexity in the size of the set of nodes from which the control can start and polynomial in all the other parameters.

Publisher

Scientific Annals of Computer Science

Subject

Applied Mathematics,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3