Development of a Standard Curve to Account for Viable Loads of Bifidobacterium animalis subsp. lactis HN019 Using RNA by Real-Time PCR

Author:

Ali Md. A1,Hui Wang1,Lin Guangen1,Dang Fang F1,Wu Shuang1,Man Chaoxin1,Jiang Yujun1

Affiliation:

1. Northeast Agricultural University, College of Food Science, Key Laboratory of Dairy Science, Ministry of Education, Harbin, China 150030

Abstract

Abstract Background: Bifidobacterium animalis subsp. lactis HN019 is widely used as a probiotic in various dairy preparations. To ensure optimal health benefits, an adequate number of probiotics should be viable in products, but the culture-based methods require longer periods to account for the strain. Objective: Develop a standard curve to account viable loadof B. animalis subsp. lactis HN019 by real-time PCR. Methods: The growth curve was developed accordingto plate count method, and cycle threshold (CT) curve was prepared using CT values. These two curves were then combined to construct the standard curve. To validate the method, the strain was proliferated in whole milk, and viable loads were enumerated by plate counting and relativePCR counting followed by determining the SEM betweenthe two counts. Results: The growth curve and CT curve, respectively, showed the highest viable load (2.13 × 108 CFU/mL) and lowest CT value (18.29) after 18 h, and during the entire growth phase (0–18 h), viable loads are inversely proportional to the CT values. The standard curverevealed the model y = 2E + 18e−1.233x (y = cells/mL, x = CT value; R2 = 0.992). In validation, the highest SEM (± 0.70 × 108) was found between the plate count (1.15 × 108 cells/mL) and relative PCR count (1.29 × 108 cells/mL) after cultivating for 14 h. Conclusions: The method could be readilyused in dairy industries to quantify viable B. animalis subsp. lactis HN019 by a shorter period. Highlights: Culture-independent enumeration of viable B. animalis subsp. lactis HN019 by real-time PCR.

Publisher

Oxford University Press (OUP)

Subject

Pharmacology,Agronomy and Crop Science,Environmental Chemistry,Food Science,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3