Broadband All-Metal Vivaldi Array Antenna with Pyramidal-Shaped Wings for LEO Satellite Applications

Author:

Jang Doyoung,Lim Tae Heung,Park Seulgi,Choo Hosung

Abstract

In this paper, we propose an all-metal Vivaldi antenna with pyramidal-shaped conductive wings for use in satellite signal intelligence applications. The inner metal Vivaldi antenna consists of radiating flares and a transition part between the feeder and the flares. The curvature of the inner flares is optimized, while the outer edges of the radiating flares are connected to the pyramidal-shaped wings to obtain a higher antenna gain over the entire operating frequency band. To verify the antenna’s feasibility, performance aspects such as the reflection coefficient, the radiation patterns, and the boresight gain are measured in a full anechoic chamber. The fractional bandwidth of the proposed antenna is 54%, while the boresight gain is greater than 7.3 dBi in the frequency range from 8 GHz to 12 GHz. To examine array performance aspects such as the total gain and beam steering, the proposed Vivaldi antenna is extended to a 4 × 1 linear array configuration. When the main beam is steered from 0° to 15°, the maximum gain is varied from 14.5 dBi to 13.7 dBi, while the side lobe level is decreased from 11.2 dB to 6.3 dB.

Funder

Hanwha Systems

Publisher

Korean Institute of Electromagnetic Engineering and Science

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Instrumentation,Radiation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3