Inductively Coupled Electrical Stimulation - Part I: Overview and First Observations

Author:

Dennis Robert

Abstract

Inductively Coupled Electrical Stimulation (abbreviated ICES) is a reliable, effective, non-invasive, pain-free, low cost, low-power and energy efficient method to apply micro-, nano-, and pico-ampere electrical stimulation to deep tissues. The design intent of ICES is to use magnetic pulses of a specific trapezoidal waveform to induce micro-, nano-, and pico-currents in tissues by electromagnetic induction rather than electrical conduction. Induction allows electromagnetic energy to pass through dry, intact, non-conductive garments, bandages, and tissues such as skin, to reach deep tissues and lesions with much higher energetic efficiency and volumetric uniformity than is possible using conductive energy transfer through the skin, thus conferring many advantages over conduction-based technologies such as TENS and micro-current stimulation devices. This is the first in a series of reports identifying the key electromagnetic parameters for inductively coupled electrical stimulation to yield consistent and reliable biological results. Details of the experimental PEMF apparatus used in the initial NASA studies, published in 2003 are reported, and for the first time the electro-magnetic methods are reported, analyzed in detail, and the observed biological effects of different waveform shapes are reported. To correct the omissions in the original NASA publication, the visible biological response observations are included, with the identification of the key electromagnetic parameters that were found to yield significant and repeatable biological effects. This paper is submitted in conjunction with a Letter to the Editor of this journal, which attempts to explain the reasons for the confusion and controversy surrounding PEMF research, and why it has proven so difficult to make scientific progress in the study of the effects of these apparently non-harmful, non-invasive electro-magnetic pulses on biological systems. The work reported in this paper is a first attempt to correct past errors and omissions, in line with the suggestions proposed in the Letter to the Editor.

Publisher

Cortical Metrics LLC.

Reference11 articles.

1. Dennis, R.G. Letter to the Editor: Why so much confusion about PEMF? JCIM, volume 1(1), 2018.

2. Bassett et al, Augmentation of bone repair by inductively coupled electromagnetic fields, Science, New Series, v. 184, No. 4136, pp. 575-77, May 3, 1974

3. Goodwin, T.J. Physiological and Molecular Genetic Effects of Time-Varying Electromagnetic Fields on Human Neuronal Cells. NASA/TP-2003-212054, 2003, available electronically from: https://ntrs.nasa.gov/archive/nasa/ casi.ntrs.nasa.gov/20030075722.pdf

4. https://pdfserv.maximintegrated.com/en/ds/MAX038.pdf

5. Dennis R.G. Bipolar implantable stimulator for long-term denervated muscle experiments. Med & Biol Eng & Comput, March, 36: 225-28, 1998.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3