Deep chemometrics using one‐dimensional convolutional neural networks for predicting crude oil properties from FTIR spectral data

Author:

Ta Souvik1,Alizadeh Shahla1,Samavedham Lakshminarayanan12,Ray Ajay K.1

Affiliation:

1. Department of Chemical and Biochemical Engineering Western University London Ontario Canada

2. Department of Chemical and Biomolecular Engineering National University of Singapore Singapore Singapore

Abstract

AbstractThe determination of physicochemical properties of crude oils is a very important and time‐intensive process that needs elaborate laboratory procedures. Over the last few decades, several correlations have been developed to estimate these properties, but they have been very limited in their scope and range. In recent years, methods based on spectral data analysis have been shown to be very promising in characterizing petroleum crude. In this work, the physicochemical properties of crude oils using Fourier transform infrared (FTIR) spectrums are predicted. A total of 107 samples of FTIR spectral data consisting of 6840 wavenumbers is used. One dimensional convolutional neural networks (CNNs) were used employing FTIR spectral data as the one‐dimensional input and Keras and TensorFlow were used for model building. The Root Mean Square Error decreased from 160 to around 60 for viscosity when compared to previous machine learning methods like partial least squares (PLS), principal component regression (PCR), and partial least squares regression with genetic algorithm (PLS‐GA) on the same data. The important hyper‐parameters of the CNN were optimized. In addition, a comparison of results obtained with different neural network architectures is presented. Some common preprocessing techniques were also tested on the spectral data to determine their impact on model performance. To increase interpretability, the intermediate neural network layers were analyzed to reveal what the convolutions represented, and sensitivity analysis was done to gather key insights about the wavenumbers that were the most important for prediction of the crude oil properties using the neural network.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Convolutional neural networks for sensitive identification of tea species using electrochemical sensors;Journal of Food Measurement and Characterization;2024-05-24

2. Issue Highlights;The Canadian Journal of Chemical Engineering;2023-11-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3