The surrogate scaffold method for quantifying molecular release kinetics from drug delivery systems

Author:

Borges Fernando T. P.1,Papavasiliou Georgia2,Teymour Fouad1ORCID

Affiliation:

1. Department of Chemical and Biological Engineering, Illinois Institute of Technology Chicago Illinois USA

2. Department of Biomedical Engineering, Illinois Institute of Technology Chicago Illinois USA

Abstract

AbstractThe accurate determination of kinetics of therapeutic release from drug delivery vehicles is an essential step in the optimized design of such systems for biomedical and pharmaceutical applications. Most methods in current use for quantifying therapeutic release rates are developed to provide consistency, reproducibility, and ease of usage in a laboratory setting. These methods, however, do not necessarily mirror the release conditions when the drug delivery system comes into contact with the target tissue environment during application. As a result, the findings from these studies provide only comparative guidelines about the drug delivery rates and duration. Successful optimization of a drug delivery system requires complete, and accurate, knowledge about the release profile over an extended period of time to determine the initial release rate—including burst release if present, the rate of change of the release kinetics, and the maximum duration of delivery at a minimum therapeutic concentration level. We have developed an indirect method for the quantification of release kinetics suitable for nanoparticle‐based drug delivery systems that utilizes a hydrogel scaffold as a tissue surrogate to better emulate therapeutic delivery into a target tissue environment. Details of the method and its application to the release of an angiogenic peptide from a nanoparticle emulsion are provided in this communication.

Funder

National Institutes of Health

Publisher

Wiley

Subject

General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Archie E. Hamielec memorial issue;The Canadian Journal of Chemical Engineering;2023-05-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3