Recent trends in metal‐organic frameworks mediated lipase immobilization: A state‐of‐the‐art review

Author:

Patil Prasanna J.123,Dong Xiaoxiao34,Usman Muhammad13,Bhambore Nandini R.5,Shah Haroon13,Zhang Chengnan123,Li Xiuting1246ORCID

Affiliation:

1. Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University) Ministry of Education Beijing China

2. Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering China General Chamber of Commerce Beijing China

3. School of Food and Health Beijing Technology and Business University Beijing China

4. Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China

5. Environmental Impact and Sustainability Division CSIR‐National Environmental Engineering Research Institute (CSIR‐NEERI) Nagpur Maharashtra India

6. Beijing Association for Science and Technology‐Food Nutrition and Safety Professional Think Tank Base Beijing China

Abstract

AbstractImmobilized lipase is a powerful biocatalytic system with numerous applications in industries, particularly in the energy, pharmaceutical, cosmetic, and food industries. Reusability, simple recovery, and high chemical and thermal stability make it an attractive alternative to traditional chemical catalysts in industrial applications. Novel methods and support materials for immobilizing lipases have recently attracted much attention. Metal‐organic frameworks (MOFs) are a promising class of materials for enzyme immobilization carriers due to their appealing features, including a high specific surface area, high specific porosity, a stable framework structure, and a wide variety of functional sites. Due to the protection provided to enzymes by MOFs, several reported MOFs‐lipase composites display exceptional catalytic characteristics relative to free lipases. This includes increased enzyme efficiency, stability, selectivity, and recyclability. Herein, we summarize an updated review of the most recent advances in MOFs immobilizing lipases. This review sheds light on the numerous aspects of lipase‐MOF immobilization, with special emphasis on different techniques of designing lipase‐MOF platforms and the advantages of lipase‐MOF composites. Subsequently, molecular simulation approaches in lipase‐MOF immobilization are briefly introduced. Moreover, practical applications of MOFs‐lipase composites have been outlined. Finally, potential limitations and future directions for MOFs‐lipase immobilization research are highlighted.

Funder

National Natural Science Foundation of China

Beijing Municipal Natural Science Foundation

Beijing Municipal Commission of Education

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3