High‐quality and efficient recovery of waste agricultural mulch film mixture via solid‐state shear milling technology

Author:

Di Zhepeng1,Yang Shuangqiao1,Bai Shibing12ORCID

Affiliation:

1. State Key Laboratory of Polymer Materials Engineering Polymer Research Institute of Sichuan University Chengdu China

2. School of Chemical Engineering and Technology, Xinjiang University Urumqi China

Abstract

AbstractThe problem of white pollution caused by waste agricultural mulch film (WAMF) has a long history and has brought great damage to the soil and ecological environment. The recycled WAMF has no processing performance because it is doped with a large amount of cotton straw and soil inorganic particles. In this study, it was reported for the first time that high‐quality and efficient recovery of WAMF was carried out by means of solid‐state shear milling (S3M) technology. After the pretreatment of S3M, the recycled WAMF is transformed into an active composite powder with a particle size of microns, which regains certain processing performance. Then we prepared a composite material similar to WPC (wood‐plastic composite) by using the composite powder. It was found that under the action of strong three‐dimensional shear force, the phase domain size of the composite decreased significantly, and the compatibility of each component improved. The macroscopic performance was that the tensile strength was increased by 65% and the bending strength was increased by 74%, reaching 8.30 and 17 MPa, respectively. The 24‐h water absorption of this composite decreased by 13%. More importantly, the thermal stability was not significantly reduced during the milling process. This process does not require sorting, cleaning, or other operations, which can greatly simplify the process flow and improve recovery efficiency. It provides an effective solution to the problem of white pollution caused by WAMF.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3