Imputed quantile vector autoregressive model for multivariate spatial–temporal data

Author:

Jinwen Liang1,Maozai Tian23

Affiliation:

1. College of Statistics and Data Science, Faculty of Science Beijing University of Technology Beijing People's Republic of China

2. School of Statistics Renmin University of China Beijing People's Republic of China

3. School of Mathematics and Data Science Changji University Changji People's Republic of China

Abstract

AbstractImputing missing values in multivariate spatial–temporal data is important in many fields. Existing low rank tensor learning methods are popular for handling this task but are sensitive to high level of skewness. The aim of this paper is to develop an alternative method with robustness and high imputation accuracy for multivariate spatial–temporal data. In view of the fact that quantile regression is robust to noises and outliers, we propose an imputed quantile vector autoregressive (IQVAR) model. IQVAR can simultaneously impute missing values and estimate parameters of quantile vector autoregressive model. The objective function includes check loss and nuclear norm penalization. We develop an ADMM (Alternating Direction Method of Multipliers) algorithm to solve the resulting optimization problem. Simulation studies and real data analysis are conducted to verify the efficiency of IQVAR. Compared with other approaches, IQVAR is more robust and accurate.

Funder

Beijing Postdoctoral Science Foundation

Publisher

Wiley

Reference24 articles.

1. M. T.Bahadori Q. R.Yu andY.Liu.Fast multivariate spatio‐temporal analysis via low rank tensor learning in: Proceedings of the 27th international conference on neural information processing systems ‐ volume 2 MIT Press Cambridge MA. p. 3491C3499.2014.

2. Exact Matrix Completion via Convex Optimization

3. J.Cates R. C.Hoover K.Caudle C.Ozdemir K.Braman andD.Marchette.Forecasting multilinear data via transform‐based tensor autoregression.2022arXiv preprint arXiv:2205.12201.

4. Low-Rank Autoregressive Tensor Completion for Spatiotemporal Traffic Data Imputation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3