Thermal analysis of the influence of harmonics on the current capacity of medium‐voltage underground power cables

Author:

Gouda Osama E.1,El Dein Adel Z.23ORCID,Tag‐Eldin Elsayed4ORCID,Lehtonen Matti5ORCID,Darwish Mohamed M. F.6ORCID

Affiliation:

1. Department of Electrical Power Engineering, Faculty of Engineering Cairo University Giza Egypt

2. Department of Electrical Power Engineering, Faculty of Energy Engineering Aswan University Aswan Egypt

3. Faculty of Technological Industry and Energy Thebes Technological University Luxor Egypt

4. Faculty of Engineering and Technology Future University in Egypt New Cairo Egypt

5. Department of Electrical Engineering and Automation Aalto University Espoo Finland

6. Department of Electrical Engineering, Faculty of Engineering at Shoubra Benha University Cairo Egypt

Abstract

AbstractIn this article, an algorithm is proposed and used to study the influence of harmonics on the behavior of medium‐voltage underground cables in flat formation. The proposed algorithm is a thermal model based on the heat equilibrium of the thermal circuit nodes of the medium‐voltage cable system. The impact of harmonics on the temperature rise of the cable elements and the cable capacity is evaluated in this article. Also, the impact of harmonics on the derating factors of cable for different soil types is presented. Finally, the measurement of temperatures of cable cores is carried out experimentally and compared with the calculated results to validate the proposed algorithm. One of the algorithm merits is that several harmonic percentages can be taken into account for each cable phase individually, and the heat exchange between the cable phases and their sheath is also taken into consideration. From the obtained results, it is illustrated that the presence of harmonics has a remarkable influence on the cable core temperature; mainly, harmonics of the third and fifth orders may lead to dry zone formation around the cable. It is also observed that the presence of harmonics has an important influence on the cable current, especially when it is buried in soil that has high thermal resistivity during the summer season (suction tension = ∞). In summer, the cable core temperature reached 152.162°C, 139.053°C, and 133.375°C when lime, sand, and silty sand, respectively, are used as backfill materials, rather than 90°C in the normal operating condition of the 11 kV three‐phase single‐core cable. It is observed also that with the increase of the soil thermal resistivity, the ratio of /) reached about 1.2 times at 2.5 K m/W soil thermal resistivity. In addition, it is also observed that the impact of harmonics leads to a percentage reduction in the derating factor of the cable center phase by 11.88%–12.37% depending on the composition of the backfill materials.

Publisher

Wiley

Subject

General Energy,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3