Affiliation:
1. Faculty of Technology and Metallurgy University of Belgrade Belgrade Serbia
2. Innovation Centre of the Faculty of Technology and Metallurgy University of Belgrade Belgrade Serbia
3. Faculty of Biology, Institute of Physiology and Biochemistry “Ivan Djaja” University of Belgrade Belgrade Serbia
Abstract
Two azo dye ligands, bearing different substituents (chlorine atom or methoxy group) in the para‐position of the phenyl ring, were employed for the synthesis of two Cu(II) chelates. Full structural affirmation of complexes was assessed. X‐ray diffraction measurements revealed that the coordination geometry for Cu atoms in both complexes is square‐pyramidal with a ligand:metal ratio of 2:1 where dyes behave as monobasic bidentate ligands. Thermogravimetric analyses of the complexes and their starting dyes were performed to study their thermal stabilities and decomposition behavior confirming the thermal stability of both dyes and complexes. Antioxidative activity of the complexes has been assigned and compared with their parent ligands revealing that the presence of the electron–donor, methoxy group, in the phenyl ring, in both dye and complex, is responsible for the activity (IC50 values of 1.54 for the dye and 1.30 mM for the complex). It should be stated that the complexation of the methoxy‐substituted dye leads to enhanced antioxidative activity concurrent to a standard antioxidant molecule of ascorbic acid, making this molecule a promising antioxidant agent. Docking study with vascular endothelial growth factor receptor 2 and Aurora kinase A proteins indicate that complexes exhibit higher binding affinities to proteins than the starting ligand dyes. The most promising structure exhibiting the best docking potential toward both proteins is the complex‐bearing methoxy group. The presented results represent a promising start for further investigations of these compounds as potential therapeutic candidates for the treatment of various types of cancer.
Subject
Inorganic Chemistry,General Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献